
Honours Individual Project Dissertation

ANIMATION OF TOMBSTONE DIAGRAMS

Michal Broos
April 20, 2021

i

Abstract

Tombstone diagrams are used to illustrate how programming language processors work and
how their composition can manipulate software to reach its execution. However, the traditional
tombstone diagrams suffer from several problems which is why an improved notation, called
J-diagrams, has recently been introduced. Through our background research we found that
there was no software for animating tombstone diagrams that could be used in educational
settings. Hence, the aim of this project was to design and implement a graphical user interface for
animating J-diagrams. Using an iterative development process, we first identified the individual
requirements for the software. We then transformed these requirements into a design after
considering different alternatives. We implemented the software using PySide2 and finally,
evaluated it through usability heuristics and in a user study. We found that all participants
thought animation was a useful educational tool. The functionality we implemented was rated on
average at 4.88 out of 5 and the design at 4.38 out of 5. Two key findings were that the majority
of participants found J-diagrams straightforward and that they would use our software if it were
incorporated into the Programming Languages course at the University of Glasgow.

i

Acknowledgements

We would like to thank:

Dr Ornela Dardha for proposing this project and the engaging supervision sessions;

Ms Uma Zalakain for providing mind-stretching suggestions during the supervision;

the Qt and PySide2 developers for creating a framework beyond our imagination;

the composers of the Xenoblade soundtracks thanks to whom our mind kept sane even
during the darkest Shadow of the Lowlands.

ii

Contents

1 Introduction 1
1.1 Motivation 1
1.2 Aims 1
1.3 Structure 1

2 Background 3
2.1 Language processors 3
2.2 From T-diagrams to J-diagrams 4
2.3 Animation as an educational tool 9
2.4 Related software 10

3 Requirements 13
3.1 MoSCoW 13
3.2 User stories 15

4 Design 16
4.1 List of pieces 16
4.2 Adding custom pieces 18
4.3 Diagram scene 18
4.4 Menu bar, toolbar and keyboard shortcuts 21
4.5 Animation elements 23
4.6 Overall design 24

5 Implementation 26
5.1 Overview 26
5.2 List of pieces 26
5.3 Diagram pieces 27
5.4 Diagram scene 28
5.5 Animation window 32
5.6 Main window 33

6 Evaluation 35
6.1 Evaluation through usability heuristics 35
6.2 Evaluation through user study 36

7 Conclusion 39
7.1 Summary 39
7.2 Reflection 39

iii

7.3 Future work 40

Appendices 41

A Code and Data Listings 41

B User study documents 48
B.1 Ethics form 48
B.2 Survey 50

C Guides 57
C.1 Video guide 57
C.2 Text guide 57

Bibliography 59

1

1 Introduction

1.1 Motivation
Language processors, more concretely translators and interpreters, are an important part of
computing science. Without language processors, it would not be possible to execute programs
unless they were written directly in machine code. Every computer scientist should have at
least a basic understanding of translators and interpreters. Hence, it is important to have a clear
means of explaining how they work and how their composition can manipulate software to
reach its execution. A common way of illustrating these concepts is to use a diagrammatic system
called tombstone diagrams. Despite being well-established, tombstone diagrams, or T-diagrams
for short, are not perfect. J-diagrams have recently been proposed as a redesign which solves
the problems of T-diagrams, thereby providing improved readability. Creating an interactive
interface that would animate J-diagrams could prove useful for educational purposes.

1.2 Aims
The aim of the project is to design and implement a graphical user interface which will animate
J-diagrams. The user will be able to create an arbitrary diagram composed of translators, inter-
preters and machines or choose a diagram from the list of predefined examples. The examples
will demonstrate a varied range of concepts involving programming language processors such
as cross-compilation or bootstrapping. For both user-created and predefined diagrams, the
animation will demonstrate how the individual components of the diagram are manipulated.
The software will be implemented using PySide2 (Qt). The usefulness of J-diagrams and the
implemented software will be evaluated through a user study. The successful implementation
will culminate in the software being used as a part of the Programming Languages course at the
University of Glasgow. It will also be released to the computing science public.

1.3 Structure
This dissertation is structured as follows.

Chapter 1 - Introduction
• Motivation for the project
• Aims of the project
• Dissertation structure

Chapter 2 - Background
• Introduction of the relevant concepts
• Demonstrating how J-diagrams solved the issues of the traditional T-diagrams
• Exploration of animation as an educational tool
• Related software research

2

Chapter 3 - Requirements
• Project requirements categorised using the MoSCoW prioritisation technique
• Identification of the target audience

Chapter 4 - Design
• Designing the individual software elements
• Combining the individual elements into the overall design

Chapter 5 - Implementation
• Implementation overview
• Implementation of the individual software components

Chapter 6 - Evaluation
• Demonstrating how usability heuristics were transformed into the software
• Presentation of the user study and its results

Chapter 7 - Conclusion
• Summary of the project
• Personal reflection on the project
• Suggestions for future work

3

2 Background

In this chapter, we first introduce the language processors and how they relate to our project.
We then present the history of tombstone diagrams which culminated in the proposal of
J-diagrams. We explain why J-diagrams were proposed, how they have improved the tra-
ditional tombstone diagrams and why they have the potential to succeed. We then explore
animation as an educational tool and identify what is a good animation. Finally, we present the
findings of our related software research.

2.1 Language processors
Before we turn our focus onto the main point of this work, tombstone diagrams and their
animation, we shall briefly introduce the topic of language processors. Language processors are
a crucial part of computing science because without them, it would be impossible to execute
software unless it was written in the particular machine code. There are two main types of
language processors - translators and interpreters.
Watt and Brown (2000) define a translator as a program that accepts a source code written in
one language, the source language, and produces a semantically-equivalent code expressed in
another language, the target language.
The same authors define an interpreter as a program that accepts a source code written in a
certain language, the source language, and runs that code immediately.
The apparent difference in these definitions is the fact that interpreters do not include any target
language. This is because interpreters do not translate the source code, which is the key distinction
between the two types of language processors.

Both translators and interpreters are programs themselves and thus have to be expressed in some
language. This language is referred to as the implementation language. Together, the source,
target and implementation languages are three key terms which we will use throughout this
dissertation with their meanings as just explained.

Translators can be further classified according to the type of source language and target language
involved in the translation. Table 2.1 shows this classification. Interpreters can also be divided
into categories. However, no such distinction is necessary for this project.

Table 2.1: The classification of translators.

Translator type Source language → Target language
Compiler high-level → low-level
Assembler assembly → machine code
Decompiler low-level → high-level
Disassembler machine code → assembly
Transpiler high-level → high-level

Although Watt and Brown (2000) make the difference between translators and interpreters
obvious, not all literature follows this explicit approach. For example, Sebesta (2007) describes

4

interpreters insufficiently because they do not provide clear explanations, while Lagerstrom
(2003) is plainly wrong because they state that interpreters translate the source code.

So far, we have introduced 2 main types of language processors. There is one more type,
machines, which, as Watt and Brown (2000) point out, can be understood as “interpreters
implemented in hardware”. Similarly, interpreters can be thought of as “machines implemented
by software”. While not ignoring this relationship, we view a machine, whether abstract or real,
as an entity used for running a program expressed in a particular source language.
To conclude, there are three takeaways from this section which shall be turned into project
requirements.

• Translators, interpreters and machines should be supported.
• There should be a clear distinction between translators and interpreters.
• The classification of translators as shown in Table 2.1 should be applied.

2.2 From T-diagrams to J-diagrams
Tombstone diagrams are used to illustrate language processors and how their composition can
manipulate a program to reach its execution. The origins of the concept date back to the diagrams
used during the UNCOL project (Strong et al. 1958). T-diagrams themselves were introduced
by Bratman (1961) and extended by Earley and Sturgis (1970). Figure 2.1 illustrates these two
notations with a practical example.

(a) The predecessor of the first T-diagram

OTN UNCOL

UNCOL UNCOL 704

704

OTN UNCOL

704

(b) The first T-diagram

Figure 2.1: The compiler translating from UNCOL to 704 and running on the 704 machine is used to
compile the OTN to UNCOL compiler expressed in UNCOL, thereby producing the latter compiler
capable of running on a 704 machine. (a) and (b) illustrate the same process.

T-diagrams can be created from four unique shapes corresponding to translators, interpreters,
machines and programs as shown in Figure 2.2. The composition of pieces can be horizontal,
vertical or diagonal with the key restriction being that two languages which meet together must
match. Figure 2.3 demonstrates horizontal and vertical composition. We shall talk about diagonal
composition shortly.

S T

I

S

I

S

S

P

Figure 2.2: Four shapes used in T-diagrams representing, from left to right, a translator from S to T
implemented in I, an S interpreter implemented in I, a machine capable of executing S and a program P
written in S where S = source language, T = target language and I = implementation language as described
in Section 2.1.

5

C

sort

C x86

x86

x86

sort

x86

(a) Compilation

Basic

search

Basic

x86

x86

(b) Interpretation

Figure 2.3: Examples of horizontal and vertical compositions in compilation and interpretation. (a) shows
a sort program written in C being compiled to x86 by a compiler running on an x86 machine. (b) shows a
search program written in Basic being run by an interpreter running on an x86 machine. Notice that in
both cases the neighbouring languages match which is a requirement for valid composition of pieces.

Despite being nearly 60 years old, T-diagrams are still used today, especially as a teaching aid.
Other authors (Burkhardt 1965; Rosin 1977; Slansky and Finkelstein 1968) came with their own
notations but neither was able to replace T-diagrams. The most recent redesign of T-diagrams,
titled J-diagrams, has been proposed by Wickerson and Brunet (2020) after identifying the
following problems with T-diagrams.

Problem 1 Diagonal composition of two translators is unclear. This is because three languages
meet at two interfaces but it is only two of these languages that are required to match. The
two matching languages must be the implementation language of the left piece and the
source language of the right piece. Figure 2.4 shows how this problem can occur. Note
that this problem is also apparent in Figure 2.1b where all three languages that meet are
UNCOL.

Problem 2 There is no distinction between the operands and the result of the composition.
For example, in Figure 2.1b, it is not clear that the translator on the right is the result of
composing the left translator with the middle translator. All three translators appear to be
equivalent.

Problem 3 The T shape representing translators is symmetric which means it is possible to
compose two translators in a way that appears valid, but in fact it is invalid. The leftmost
diagram in Figure 2.5 illustrates this. Note that it seems this composition is used in Figure
2.1b. However, it is not the composition being present but rather a manifestation of
Problem 2.

Java x86

C C x86

x86

(a) Clear matching of languages

Java C

C C x86

x86

(b) Unclear matching of languages

Figure 2.4: Diagonal composition of two translators. In each case, the composition is valid but Problem 1
is apparent in (b).

6

Figure 2.5: Examples of invalid composition in T-diagrams illustrating Problem 3.

There are further problems caused by the choice of shapes for both translator and interpreter
pieces which we identified in addition to those mentioned byWickerson and Brunet (2020). They
follow the same logic as described in Problem 3 and thus we shall consider them as belonging
to that problem. The middle and the rightmost diagram in Figure 2.5 are examples of such
further problems. Note that in the middle diagram, if we moved the interpreter to the left of the
translator, the composition would be valid because it would be a case of translating an interpreter.
Once again, it is the symmetry causing the problem.

Wickerson and Brunet (2020) solve Problem 1 and Problem 3 by designing the individual pieces
such that no ambiguous composition is possible. Problem 2 is solved simply by not showing
the composition results in the diagrams. J-diagrams can be created from three unique pieces
corresponding to translators, interpreters and machines as shown in Figure 2.6. Compared to
T-diagrams, there is no piece for programs. The pieces allow only two types of composition -
horizontal and diagonal. Figure 2.7 demonstrates composition in J-diagrams using three practical
examples. Note how two pieces only ever connect at one interface, thereby solving Problem
1. Also note how invalid compositions are impossible to create in J-diagrams (Figure 2.8), thus
solving Problem 3. Other than solving the problems, J-diagrams are also more concise and
easier to understand than T-diagrams. This can be observed in Figure 2.10.

 S T

I

 S

I S

Figure 2.6: Three pieces used in J-diagrams. The pieces are presented in the same order and have the same
meaning as the pieces of T-diagrams in Figure 2.2. Note that there is no program piece in J-diagrams.

In a sense, one could think that J-diagrams are just another notation which will be forgotten.
However, the main advantage of J-diagrams over the other notations is that J-diagrams are not
a completely new system. They are based on the established system of T-diagrams. Hence,
transitioning from one to another is seamless. Additionally, Wickerson and Brunet (2020) not
only identified the problems of T-diagrams but also demonstrated how the problems are solved
with J-diagrams. Rosin (1977) also identified problems with T-diagrams but never explicitly
stated how they are resolved. Moreover, problem identification was not thorough. Although
the issue of a possible but an illegal composition (Problem 3) is fixed by Rosin’s notation, the
key problem which persists is that of matching languages (Problem 1). It is not clear which
languages of composed elements should match. For T-diagrams, this problem only occurs when
composing two translators in which case three languages meet at two interfaces. In Rosin’s
notation, this problem is intensified because as many as four languages meet at one interface and
the problem occurs when a translator and an interpreter or two interpreters are composed (two
translators cannot be composed directly in one line in this notation). Figure 2.9 illustrates this.

Considering the advantages of J-diagrams, we chose them as the notation for our project.

7

C x86as

x86

x86as x86

x86

(a) Horizontal composition of two translators

C++ ARM

C++ C++ x86_64

C++

(b) Diagonal composition of two translators

Java Bytecode

Java

Bytecode

C++ C++ x86

C++

(c) Horizontal and diagonal composition including two translators and an interpreter

Figure 2.7: Examples of horizontal and diagonal composition in J-diagrams. (a) shows a two-stage
compilation of a C program to x86. (b) shows compiling a C++ compiler from C++ to x86_64. (c) is
an example of Java compilation. It is clear from these examples how J-diagrams solve Problem 1 of
T-diagrams.

Figure 2.8: Equivalents of the T-diagrams from Figure 2.5 showing how J-diagrams solve Problem 3.

Figure 2.9: A diagram from Rosin (1977). Notice how four languages meet at the second and the third
piece from the left (a translator and an interpreter), as well as at the two middle pieces (two interpreters).
This is an intensification of Problem 1.

8

(a) The original representation of the XPL’s history

(b) A more concise representation of the XPL’s history

Figure 2.10: The history of XPL expressed as a (a) T-diagram and (b) J-diagram. Source: Wickerson
and Brunet (2020).

9

2.3 Animation as an educational tool
Using animation as an educational tool is a vast topic that one could dedicate an entire project to.
The topic as a whole is beyond the scope of this dissertation. However, before proceeding, we
must answer one key question regarding animation. We need to know if there is any point in
animating tombstone diagrams.

According to Ross and Grinder (2002), in the sphere of computer science education, algo-
rithm animation also referred to as visualisation is most common. The same authors state that
“visualizations play a key role in providing insights into important concepts”. The authors of
the two well-known animation tools for data structures and algorithms (Galles 2011; Halim
2011) express a similar message of helping students to understand data structures and algorithms
better. Despite this, there have been questions about effectiveness of algorithm animation. As a
reaction to this, Hundhausen et al. (2002) conducted a meta-study of 24 experimental studies
about algorithm visualisation effectiveness. The authors found that algorithm visualisation is
educationally effective, not as a mechanism for transferring knowledge to students but rather as a
“vehicle for actively engaging students in the process of learning”. Although the research focused
on algorithm visualisation, we believe the findings are applicable to animation of tombstone
diagrams as well. Not only are both subsets of educational software visualisation, but animation
of algorithms also involves some kind of diagram illustrating the underlying data structure. For
example, when animating the longest common substring problem, the suffix tree shown in Figure
2.11 is a type of diagram. The positive outcome of this research means that continuing with our
project is meaningful.

Figure 2.11: Su�x tree diagram used in the animation of the longest common substring algorithm on
VisuAlgo.

Mernik and Zumer (2003) confirmed these findings in their research closer to our topic. The
authors developed a visualisation tool for teaching compiler construction and observed the
following educational benefits of animation:

• Keeping students active in their learning
• Helping students to develop mental models
• Stimulation of exploratory learning by providing immediate feedback
• Different learning style and speed are supported
• Increased motivation to learn
• Better understanding of concepts

Although our work does not involve constructing compilers, we would expect similar benefits
from a tool for animating tombstone diagrams. This is because the tool would represent just
another level of abstraction above, that is, not showing how compilers are constructed but how
they are composed with other language processors.

10

Fleischer and Kučera (2002) summarised suggestions of several authors regarding what concerns
a good algorithm animation. We picked the following key points applicable to our project which
shall be transformed into project requirements.

• The representation of diagrams should be uniform throughout the tool.
• User-created diagrams should be supported.
• Animations should be simple without any elaborate graphics. Colour should be used for
highlighting the current step.

• Textual explanations should be included.
• Player controls bar should be available.
• It is sometimes helpful to show different stages at the same time. Hence, it should be
possible to animate multiple stages independently.

2.4 Related software
Finally, before proceeding with requirements gathering, we had looked for any software using
tombstone diagrams. The point of this part of background work was to find an answer to the
question “Is there a piece of software for animating tombstone diagrams? If not, what related
software is there?”

Searching for “tombstone diagram” and “t-diagram” on GitHub, GitLab and Google revealed
several projects, most of which were unrelated to our type of diagrams. We noticed a degree
of clashing terminology with other fields, e.g. p-T diagrams in Chemistry or the tombstone
phenomenon in circuitry, and even within Computing Science, e.g. tombstones as markers
for dead code analysis. There are a few LaTeX macros and a package for drawing tombstone
diagrams which we slightly modified and used for drawing T-diagrams in this chapter (Jakobsen
2017). There is also an extension for the diagramming software Dia which adds the four shapes
used in T-diagrams (ter Horst 2014). Both of these offer creation of T-diagrams but not their
animation. Additionally, the Dia extension is cumbersome to use because the shapes include
only one language text field by default. It is sufficient for machines but for every interpreter and
translator, which by definition include two and three languages respectively, text fields have to be
added manually. Having found Dia, we looked at one of the most popular online diagramming
tools called diagrams.net (draw.io previously). This tool does not support T-diagrams and the
only way to create them is by combining the letter T and I outlines with text boxes. Such a
solution is of course very inefficient.

The most related piece of software we found is called TDiag. It was developed by Hielscher
(2006a) as one of the six parts of the learning environment AtoCC (Automata to Compiler
Construction). Since AtoCC is a multipurpose system for teaching Language Theory and
Automata, T-diagrams are not its main focus. It is possible to create T-diagrams in TDiag and
the program supports connecting pieces together as well as diagram validation. However, there
is no animation. The main point of TDiag is to allow users to execute diagrams attached to local
files. Figure 2.12 shows the interface of TDiag when creating a diagram and the corresponding
diagram execution screen. Since TDiag uses the traditional T-diagrams, it suffers from the
problems described in Section 2.2. We identified one additional serious problem. The author uses
the same shape to represent the programs and interpreters. This proprietary notation is apparent
in the Components category in Figure 2.12(a) and in the diagram in Figure 2.13.

Having conducted related software research, we concluded there was no software for animating
tombstone diagrams, thereby validating the point of our project.

11

(a) Creating a diagram in TDiag

(b) Execution of the diagram from (a)

Figure 2.12: Two screens of TDiag, the program for creating and executing T-diagrams, which is a part
of the AtoCC learning environment. Source: Hielscher (2006b).

12

Figure 2.13: Diagram in which it is apparent the programs and interpreters are represented by the same
shape in TDiag.

13

3 Requirements

The requirements for the project were gathered by two means. The key features requirements
were collected from conversations with Dr Ornela Dardha, a researcher in the Formal Analysis,
Theory and Algorithms section at the University of Glasgow and a lecturer of the Programming
Languages course. Other requirements either arose from our background research or were
thought of and proposed ourselves based on our prior experience with usability heuristics.

3.1 MoSCoW
Whenever a new requirement occurred, it was categorised using the MoSCoW prioritisation
technique (Agile Business Consortium 2021). The output of this process was a live list of
requirements which kept being updated throughout the development until the final version was
produced.

Must have
1. A software which can be launched quickly without a complicated installation
2. Create arbitrary diagrams composed of translators, interpreters and machines
3. Use the J-diagrams notation
4. An intuitive drag and drop interface
5. Load diagrams from the list of predefined examples
6. Animate both user-created and predefined diagrams
7. A list of draggable diagram pieces grouped in categories (using the classification from Table

2.1 for Translators)
8. An option to add custom diagram pieces, i.e. pieces with user-defined languages, not new

shapes
9. Connect two pieces together as in a jigsaw puzzle when neighbouring languages match
10. Disallow connecting pieces when neighbouring languages mismatch and inform the user

about the problem
11. Overlapping pieces must not be allowed
12. Allow repositioning of pieces in the diagram scene while ensuring connections stay valid
13. Utility operations on individual pieces - delete, increase and decrease height
14. Animation scene which, once started, is unaffected by changes in the diagram scene
15. Explanatory textual output accompanying the animation
16. During the animation, the currently being animated piece must be highlighted
17. The ability to play, pause and replay the animation
18. Clear distinction between translators and interpreters during the animation
19. Use colour blind friendly palette throughout the software

14

Should have
20. A multi-platform software
21. A software guide - video, text or both
22. The ability to go through the animation step by step forwards and backwards
23. The ability to restart the animation and to bring it to the end instantly
24. The possibility to open multiple animation scenes, all independent of each other
25. Keyboard shortcuts for all key features
26. Predefined examples extensible by the user
27. The ability to distinguish diagram pieces by naming them
28. Import and export of diagrams
29. Exported diagrams should use a common format which is human-readable and editable
30. A way of clearing the entire diagram scene
31. A diagram scene grid to help visualise positioning
32. The ability to turn the diagram scene grid on and off
33. Automatic save and load of user-defined languages/pieces providing persistence across

executions
34. The ability to remove all user-defined languages/pieces, thus reverting back to the default

pieces only

Could have
35. The ability to rename diagram pieces
36. Change the speed of animation
37. Export diagram scene as an image and support both vector and raster graphics file formats
38. Highlighting the position where a piece will appear once dropped
39. Change the colour scheme, e.g. a dark theme
40. Image preview when choosing from the list of predefined diagrams
41. A dedicated home screen before proceeding to the diagram scene

Won’t have this time
42. Diagram scene zoom in and out
43. Collapse and expand all categories in the list of diagram pieces
44. Allow selection of multiple pieces at once so that actions could be performed in bulk
45. Highlighting the mismatched language(s) rather than the whole piece when an invalid

connection is made
46. Undo and redo functions linked to the diagram scene operations
47. Copy and paste functions for diagram pieces
48. Dedicated, rather than programmatically produced, text output for predefined diagrams
49. Structure the format of exported diagrams such that it is implementation-independent so

that the diagrams could be used in other software
50. Video guide embedded directly rather than showing a YouTube link

15

3.2 User stories
The requirements listed in Section 3.1 could all be expressed in the form of user stories. Rather
than repeating ourselves, we summarise these requirements into four high level user stories
describing the types of users which our software targets.

User 1
As a student who is taking/has taken the Programming Languages course,
I want to be able to interact with and animate tombstone diagrams,
so that I can improve my understanding of the concepts which are difficult to understand
purely from the written theory.

User 2
As a a lecturer of the Programming Languages course,
I want to have a tool for visualising language processors,
so that I can make the course content more engaging and easier to understand.

User 3
As a researcher writing a paper/book about language processing,
I want to create diagrams of the systems I am presenting,
so that I can include them in my writing, thereby helping readers to understand those
systems.

User 4
As a student who has never taken the Programming Languages course,
I want to explore a tool illustrating compilation and interpretation which is easy-to-use and
offers guidance,
so that I can improve my computing science knowledge.

16

4 Design

In this chapter, we describe the individual elements of our interface design. We provide design
alternatives whenever applicable and give reasons for rejecting them. To illustrate the designs,
we present wireframes created in the wireframing tool Balsamiq. The final section describes how
the individual elements were combined into an overall design.

4.1 List of pieces
The point of this interface element is to allow the user to choose pieces which they want to
compose together to create a diagram. Each piece is represented as a single row divided into
three columns. The entries in the columns correspond to the source, target and implementation
languages for the given piece. Since interpreters have no target language and machines have no
target and implementation languages, the entries in those cases are “-”, expressing the meaning
“not applicable”.

We considered representing languages using their file extension instead of full names. For
example, “.py” instead of “Python”. This would make the list less wordy because file extensions
are generally shorter than languages names. However, we rejected this alternative based on the
fact that it would be less explicit and unclear.

Another idea regarding the presentation of languages was to merge into one row the transla-
tors with the same source and target languages but a different implementation language, i.e.
(sourceA == sourceB) AND (targetA == targetB) AND (implementationA != implementationB). Merg-
ing of the interpreters would follow the same logic based on the matching source languages.
The advantage of this approach would be having a shorter list to scroll. On the other hand, the
user would have to be prompted for the implementation language every time, regardless of the
prompt design (e.g. a dialog with buttons, drop-down menu or text input). We rejected this
idea because we believed the convenience of not having to specify the implementation language
each time outweighed the convenience of having a shorter list. Additionally, disconnecting the
implementation language from the other languages could cause unnecessary confusion about the
meaning of the pieces.

The pieces are sorted in the ascending alphabetic order first by the source language, then by
the target language and finally by the implementation language. By pressing a keyboard letter
while having an arbitrary piece selected, it is possible to scroll instantly to the first piece whose
language starts with the given letter.

The pieces are grouped in categories which can be collapsed and expanded. There is one category
each for interpreters and machines. The categories of translators follow the classification from
Table 2.1. An alternative design would be to have only a single category for translators or to have
no categories at all. However, finding the desired pieces in such a design would be unnecessarily
difficult. We considered different ways of distinguishing the category headings from the pieces.
For example, we tried changing the text colour, highlighting the headings and making them
bold. We found the combination of the first and the last option to be the least intrusive but still
noticeable.

17

The design allows the user to select a piece and drag it onto the diagram scene (Section 4.3).
Conversely, dragging pieces within the list is not possible to avoid confusing the user. Our
design also does not show the shapes of the pieces in the list. We considered this unnecessary
because the user should already be familiar with them and even if they were not, it would only
take dragging a piece from each category onto the diagram scene to become familiar with the
shapes. We initially experimented with a design which did show the shapes. The list of pieces
in this graphical approach contained nothing but the three types of shapes used in J-diagrams.
The shapes could also be dragged onto the diagram scene and the languages would be specified
either by typing or choosing from a group of drop-down menus below the shapes similar to
TDiag. We did not take this idea further because we considered selecting the languages in this
way more time consuming than finding them directly in the list of pieces. Figure 4.1 shows two
wireframes, one for our final design and the other for the abandoned graphical approach design.
The final design contributed to the realisation of Requirement 7.

(a) Final design (b) Abandoned design

Figure 4.1: Wireframes showing two design alternatives for the list of draggable pieces. Note that we used
“Written in” instead of “Implementation” to be more concise and explicit.

18

4.2 Adding custom pieces
There is one more element in Figure 4.1a which we did not mention in the previous section,
the Add a custom piece button. This button is linked to a dialog window which allows the user
to add their own pieces, meaning pieces with user-defined languages, not shapes. Without this,
the user would be restricted to the list of predefined pieces. Since it is impossible to include all
languages by default, this is a must-have feature. An alternative design would be a simple “+”
button. We rejected this alternative because it would be less explicit. Additionally, we were not
designing for mobile devices and thus there was enough space to work with.

Our design in this case is straightforward. The dialog asks the user to choose a category for the
piece and type in its languages. Obviously, the available categories match those in the list of
pieces. Choosing the category, especially for translators, is a good practice for novice computer
scientists because it encourages them to think what category is correct for the given language
processor. An important design decision in this step was disabling the input boxes for the “not
applicable” languages of interpreters and machines. Another design decision we had to consider
was where the added pieces should appear in the list. One option was to add them below the
predefined pieces (while still respecting the categories, of course) and another option was to insert
them based on the alphabetic ordering. This is most likely a matter of personal preference but
we chose the former to be consistent. The last design choice was to include automatic scrolling
in the list to the newly added piece and highlighting it. Figure 4.2 shows the final design of the
dialog in this step which contributed to the fulfilment of Requirement 8.

(a) Adding a new compiler (b) Adding a new machine

Figure 4.2: Wireframes showing the final design of the dialog for adding user-defined pieces. Note the
disabled input boxes for the “not applicable” languages in (b).

4.3 Diagram scene
This element allows the user to create arbitrary diagrams composed of individual pieces. It can
be thought of as a canvas on which the corresponding shapes and languages are painted. The
painting happens as soon as a piece is dropped onto the diagram scene.

Since diagrams are created by connecting pieces together, we had to come up with an appropriate
design solution. A common technique to achieve this in diagrammatic software is to apply
so-called “grid snapping”. This is indeed how we designed our diagram scene. We split the
entire scene into a grid of smaller rectangles and the pieces are automatically positioned using

19

these rectangles. To improve visualisation when positioning the pieces, we included the grid in
the scene. The design of the pieces follows the J-diagrams notation with the dimensions chosen
such that both translators and interpreters take up four grid rectangles and the machines take up
a single rectangle. We chose the snapping based on the top left corner of a piece. This means
that when a piece is dropped for the first time, i.e. it is dragged from the list of pieces, its top left
corner is aligned within the grid rectangle where the mouse pointer was at the time of dropping.
The precise alignment point is an implementation detail. This behaviour is illustrated in Figure
4.3.
Another advantage of grid snapping is that it makes repositioning of pieces easy. The only
difference in design between repositioning and dropping a piece for the first time is that for
repositioning, the new position is not determined from the mouse pointer position but from the
position of the top left corner of the piece. We made this decision after realising that using the
mouse position would be inconsistent since repositioning can be initiated after clicking anywhere
on the piece. Of course, an alternative would be to display a repositioning icon in the top left
corner of a selected piece and only allow repositioning after clicking on the icon. The mouse
position could then be used as it would always be consistent. However, this would reduce usability
by reducing the flexibility of repositioning and thus we rejected that idea.

Figure 4.3: Wireframe illustrating grid snapping when dragging a piece from the list of pieces and dropping
it onto the diagram scene. Notice how the top left corner of the piece in the right image is not positioned
precisely where the mouse pointer dropped the piece in the left image, but is instead snapped to the grid
rectangle containing the mouse pointer.

Combining the design of grid snapping with the regular design of the pieces means that the
pieces connect and align naturally by being placed next to each other at the desired positions. To
make the diagrams meaningful, connections are only allowed when the neighbouring languages
are identical. We could have designed the scene such that even incorrect diagrams could be
created. However, since one of the main purposes of the software is to be educational, such
a design would not offer the immediate feedback required to learn. Hence, when an invalid
connection is established, the user is informed about the problem through a pop-up dialog and
by highlighting the problematic piece. An alternative design would be to highlight just the
mismatched languages. We did not take this design further as we did not identify any benefits
from it. The user can easily see which languages mismatch even in the first design. If a mismatch
happens after dragging the piece from the list of pieces, the piece is deleted. If it is a result of
repositioning, the piece is moved back to its previous position. Figure 4.4 illustrates this situation.
Overlapping pieces are similarly meaningless. For consistency, such situations are rectified in the
same way but with an updated dialog message.

There are a few alternative approaches to the design of positioning and connecting the pieces
which we could have taken. Firstly, instead of grid snapping, we could have used free positioning.
The user would be allowed to place and reposition pieces freely but they would have to connect

20

Figure 4.4: Wireframe illustrating an invalid connection between two translators caused by mismatched
languages. Highlighting of the culprit and a pop-up dialog are used to inform the user about the cause of
the problem and how it will be rectified.

them manually, for example, by switching to a connection definition mode and clicking on dots
appearing next to the languages only in this mode. In our design, connections arise automatically
based on the positions. Secondly, the easiest design to implement would have been one where if a
piece were placed, the next one would have to be connected to it. However, such a design would
not allow repositioning and it would be impossible to create two or more disconnected diagrams
which is useful either for comparing diagrams or when creating diagrams consisting of multiple
stages. Finally, an alternative approach still using grid snapping would have been to replace “drag
and drop” with “click and click” where two clicks correspond to selecting a piece and clicking
elsewhere to place it. All of these alternatives would have been either more restrictive or less
intuitive which is why we opted for our design.

In Figure 4.3, we illustrated the process of placing a piece onto the scene. Since we focused on
grid snapping at that point, we intentionally omitted one intermediate step between dropping a
piece and the piece appearing in the scene. In this step, the user is offered a choice to name the
piece. The reason behind this design decision was to give the user the ability to identify individual
pieces easily. This is achieved by showing a dialog window with a text input box where the user
can type the name. Although we would encourage naming the pieces, we recognised it is not
absolutely necessary, especially in simpler diagrams. Hence, we emphasised in the dialog title
that the input is optional. Another design decision we had to consider was how to display the
names. We chose to show them at the top of each piece where they do not interfere with any
connections. Figure 4.5 shows the design of the name input dialog and how the named piece
appears in the diagram scene.

Figure 4.5: Wireframe showing the name input dialog and how the named piece appears in the diagram
scene.

21

It was also necessary to design the process of increasing and decreasing the height of the pieces.
Changing height was identified as a must-have requirement because when two translators or
a translator and an interpreter are composed horizontally, it becomes impossible to connect
another piece to the implementation language of the left piece unless its height is increased. Since
changing height had to be compatible with grid snapping of pieces, we designed it such that
the height of a given piece is increased or decreased by the height of the grid rectangle. In
other words, if a default-sized translator or interpreter has its height increased once, it no longer
occupies four grid rectangles (2x2) but six (2x3). Note that we did not mention a machine in the
previous sentence because changing the height of the machines has no benefit. We ensured that
our design accounts for this and informs the user about this through a pop-up dialog.
An alternative design would be to have a “short” and a “tall” default version of translators and
interpreters which could be chosen upon dropping a piece. However, this design would still
not be sufficient because in more complex diagrams, increasing height more than once is not
uncommon and there is no “one-height-fits-all” piece.
Another condition that our design had to meet was that changing height did not result in an
invalid connection, i.e. in a languages mismatch. If it does, the user is informed about the problem
via a pop-up dialog and the problem is resolved by restoring the previous height.
The action to change height is accessible by right-clicking a piece. Other than increasing and
decreasing height, it is also possible to delete the piece from this menu. To give the user flexibility,
it is also possible to change height from the menu bar, toolbar or using keyboard shortcuts (more
on the design of these in Section 4.4). Figure 4.6 illustrates the design of heightening a piece.
Shortening of course follows the same pattern but with an opposite effect on the height.

Figure 4.6: Wireframe illustrating the design of changing the height of a piece. Note that on the left, it is
impossible to connect the machine to the compiler’s implementation language because the machine would
overlap with the assembler. Heightening of the compiler as shown on the right solves the problem.

The design described in this section contributed to the accomplishment of Requirements 2-4,
9-13, 27 and 31.

4.4 Menu bar, toolbar and keyboard shortcuts
The logic behind designing the menu bar was to include all available actions other than those
relating to drag-and-drop and the list of pieces. Figure 4.7 shows all menu bar categories and
their corresponding menus.

In the File menu, the user can create a new diagram. If the scene contains a diagram already, a
dialog asks the user to confirm they are happy to wipe the old diagram. The user can choose to
create a blank diagram or to load a predefined example. The design of this process is illustrated
in Figure 4.8. The user can also import and export diagrams. There is nothing specific about the
design of these actions other than the need to provide a file name. To keep the design consistent,
a dialog must be confirmed to wipe an existing diagram before importing can happen. If the user
tries to export an empty diagram scene, they are informed about this in a dialog and are asked to
place some pieces first. The exit action is self-explanatory.

22

Figure 4.7: Wireframe showing the design of the menu bar and the corresponding menus. Note that in the
Scene menu, the grid action changes depending on if the grid is on or o�.

Figure 4.8: Wireframe illustrating the design of creating a new diagram. Upon confirming the last step
(bottom left), the chosen predefined example appears in the diagram scene.

The Piece menu offers the same actions as when a piece is right-clicked in the diagram scene. We
described this design in the last part of Section 4.3.

In the Scenemenu, the user can clear the diagram scene. This action is designed to delete all pieces
from the scene but again, not until the user confirms in a dialog that they are happy to proceed.
If the scene is clear already, this action is pointless which is why the user is given feedback about
this. When we defined the design of the diagram scene in Section 4.3, we mentioned including a
grid. The user could find the grid distracting when not positioning pieces but simply looking at
a diagram, trying to understand it. Therefore, we gave the user an option to remove the grid and
add it back when desired. We designed the grid action such that when the grid is on, Remove
grid is displayed and when the grid is off, Add grid is shown instead. The corresponding icon also
changes accordingly. This can be noticed in Figure 4.7. The user might also want to present
their diagrams outside our software, e.g. User 3 from Section 3.2. Because of this, we included
in our design an action to save diagrams as images. The file formats which are supported is an
implementation detail.

The Examplesmenu is designed to allow quick opening of one of the predefined example diagrams.
There are no loading dialogs to go through as the selected example is instantly shown in the
diagram scene. A dialog which can appear when opening an example is the usual confirmation
prompt to prevent accidentally removing an existing diagram. One thing which the design in
Figure 4.7 does not portray is our decision to make the list of examples extensible by the user.
The implementation details of this are discussed in Section 5.6.

The only option available in the Animation menu is to start animating a diagram. The animation
design is described in Section 4.5 and 4.6. The design of the actions in the Helpmenu is simplistic.
Guide, Contact and About information are all presented in a pop-up window. We decided to
include both a video and a text guide for the software. There is not a more precise way to
demonstrate full capabilities of the software than with the video guide. On the other hand,
the text guide is useful for quickly looking up specific details. There were two possibilities

23

how to include the video guide - embedding the video directly in the software or uploading
it to YouTube and providing a link. We opted for the latter since it meant a smaller size when
distributing the software.

We also designed a toolbar offering quick access to all actions from the menu bar except Exit,
Examples and Help. The Exit and Help were excluded because there is no need to access them
quickly. We could have included Examples using a drop-down button but it would not provide
access any more quickly than selecting an example from the menu. For consistency, we used
the same icons as in the menus. We included tooltips to make it clear which action each icon
represents without having to refer back to the menus. Figure 4.9 shows the design of the toolbar.
To enable an even greater efficiency, we designed all actions except loading the individual
examples so that they can be triggered with keyboard shortcuts. We chose the shortcuts either
by following conventions, e.g. Ctrl+N for New diagram, or by choosing a letter resembling the
action, e.g. Ctrl+G for Remove/Add grid. All shortcuts can be seen in Figure 4.7.

Figure 4.9: Wireframe showing the design of the toolbar.

By combining the design decisions presented in this section, we give the user flexibility to choose
whichever way of triggering actions they prefer. The design contributed to the realisation of
Requirements 5, 21, 25, 28, 30, 32, and 37.

4.5 Animation elements
The design of animating diagrams consists of three elements - the animation scene, the box
for displaying textual output and the play controls. The animation scene always displays the
entire diagram which is being animated. There is no need for the grid because the pieces are
already positioned. The text box is initially empty. The individual animation steps correspond to
animating the individual pieces comprising the diagram. We chose to provide visual feedback to
the user by highlighting the currently being animated piece. As soon as a piece is highlighted,
its description appears at the bottom of the text box. The descriptions of the previously animated
pieces remain in the box. An alternative design would be to start with a blank animation scene
and make the pieces appear one after another as the animation unfolds. The text box behaviour
in this design would remain unchanged. We decided against this design because the individual
pieces are not independent. It would not make sense to show a piece and provide its description
referring to how it is connected, if those connections were yet to be revealed. Figure 4.10
illustrates our chosen design.

Figure 4.10: Wireframe illustrating the animation scene and the text output box. The entire diagram is
displayed, the currently being animated piece is highlighted and the corresponding text output is displayed.

24

Animation can only be useful if the user can control it, hence the need for play controls. We
included five play control buttons in our design (Figure 4.11) with the following names and
intended functionality.

Restart If an animation has started, whether it is playing, paused or finished, this button brings it
back to the start by clearing the highlighted piece and removing all text output. Otherwise,
the button does nothing since the animation is already at the start.

Backwards This button makes an animation go back one step by highlighting the previous
piece and showing the text output up to and including that piece. It automatically pauses
the playing animation. It also allows going back once the animation is finished. If the
animation has not started, the button does nothing.

Play/Pause If an animation is not playing, this button appears as Play and it starts or resumes the
animation by highlighting the next piece and showing the text output up to and including
that piece. There is a short break before moving to the next step; the precise value is
an implementation detail. If the animation is finished, the button serves as a replay from
the start button. If the animation is playing, the button appears as Pause and it stops the
animation at the current piece, keeping the text output and highlighting.

Forwards This button is equivalent to Backwards but in the opposite direction. If pressed after
the animation is finished, the animation wraps around to the beginning. If the animation
has not started, the button advances it by one step.

Finish This button brings the animation to the end by clearing any highlighting and showing
the entire text output. If the animation is finished, the button does nothing.

Figure 4.11: Wireframe showing the animation play controls. Note that the Play/Pause button changes
depending on if the animation is playing or not.

The design presented in this section contributed to the fulfilment of Requirements 15-18, 22 and
23.

4.6 Overall design
Having designed the individual interface elements, we then combined them together into an
overall design. Figure 4.12 demonstrates the final design of the window that the user is met with
after starting our software. This screen can be thought of as the home screen. We considered an
alternative design in which the home screen would be a welcome page similar to that of Eclipse
or Visual Studio Code. On this welcome page, the user would be able to select an option to
create a new diagram, import a previously exported diagram or load a predefined example. The
user would get to the diagram scene and the list of pieces after choosing one of these options.
There would also be links to the Help menu actions. We scrapped this design because it offered
no benefits. Excluding the welcome page means the user can start creating diagrams or exploring
animations straight away rather than being frustrated by having to go through one more step.

For the overall animation design, we made animation accessible in a new window. We considered
tabbed interface but that would make it impossible to see the diagram and animation scene at the
same time. The final design of the animation window is presented in Figure 4.13. The window
is opened after triggering the start animation action introduced in Section 4.4. Animation always
requires a precise starting point. This is of course known for the predefined examples. However,
for the user-created diagrams, the starting point cannot be inferred because the user can place

25

pieces in any order and position, not to mention multiple diagrams in one scene or multistage
diagrams. Therefore, we designed the starting of animation such that the user must first select a
piece where the animation should start. The animation then goes through all pieces on the path
from the starting point. We considered using the leftmost piece as the starting point but in such
cases, it would be impossible to animate disconnected diagrams. Asking for user input was the
most flexible solution. If the user tries to start without selecting a piece, they are informed about
this via a dialog. Once the user starts the animation, the corresponding diagram is copied from
the diagram scene to the animation scene which makes the two scenes independent of each other.
Since we identified in our background research that it is sometimes useful to animate multiple
stages at the same independently, we extended our design to allow opening of multiple animation
windows. Hence, the final design consists of one main window and as many animation windows
as the user needs.

The design decisions described in this section contributed to the attainment of Requirements 6,
14 and 24.

Figure 4.12: Wireframe demonstrating the final design of the main window.

Figure 4.13: Wireframe demonstrating the final design of the animation window. Note that the animation
is currently paused, hence the Play button showing.

26

5 Implementation

In this chapter, we describe how we transformed the wireframes from Chapter 4 into a concrete
implementation. We first give a brief overview and then focus on the main components of our
software in their own sections.

5.1 Overview
We implemented our software using PySide2 which is a Python binding of Qt, the framework
for development of graphical user interfaces. Although we developed our software in Windows,
the choice of Qt/PySide2 means that it is possible to run the software on Linux and macOS
because the framework is cross-platform. This was a realisation of Requirement 20. It is not
unusual for PySide2 applications to be contained in one file. We chose this approach since we
were not developing reusable modules. Despite developing in Python, we did not follow the
PEP 8 naming conventions. We used camelCase instead to match the PySide2 conventions. Our
implementation consists of five classes as described in the next five sections. In our descriptions,
we refer to PySide2 classes which always start with Q.

5.2 List of pieces
This feature is a list only in the general English meaning. Implementation-wise, the design maps
to a tree with the root being the reference point, the level 1 nodes being the categories and
the level 2 nodes, i.e. the leaves, being the individual pieces. We implemented this feature in
the PiecesTree class which is a subclass of QTreeView. Subclassing QListView would not allow
to include categories. Using QTreeView in our implementation meant using the Model-View
architecture of Qt. This is similar to the well-known Model-View-Controller design pattern but
the difference is that the View and the Controller are combined. We included our model within
the PiecesTree class as an instance variable because it was not necessary to subclass it. This does
not mean the model and view were combined into one or that the design pattern was broken. It
simply means we chose to have a single point of reference to the pattern as a whole.

One of the challenges was to decide what pieces, i.e. languages, to include and how to include
them. We started with a small sample of manually created pieces whose languages were stored in
tuples. The tuples were collected in lists which were the values in a dictionary with the language
processor categories as the keys. However, there were so many language processors that it would
not be feasible to include them all. Similarly, including only a small seemingly random subset
could be questioned by the user. Thus, our logic in the end was to write a list of common
architectures (machines) and lists of common compiled, compiled to bytecode, interpreted and
transpiled languages. By iterating over these lists in nested loops, we automatically generated the
compilers, interpreters and transpilers. We combined the pieces in these three categories with
the x86, ARM and no other machines to avoid too many similar language processors differing
only in the implementation language. The decompilers were generated from the compilers by
simply reversing the source and the target language. For the assemblers and disassemblers, we
adopted a simple approach of translating from and to the assembly language of every included

27

machine. In other words, for every machine, there is one assembler and its mirrored disassembler.
For the machines, we did not make a distinction between the 32-bit and 64-bit architectures.
It would mean duplicating all pieces and the difference is not crucial for diagramming. In any
case, the user has the option to add a piece they need. The dictionary described at the beginning
of this paragraph remained as the data structure for storing all default pieces (see Listing A.1).
Our automated approach after providing the initial input resulted not only in a variety of the
included languages but also in the well-structured categories.

The remaining functions in the PiecesTree class deal with adding the pieces to the model such that
the view can present them. The steps of this are too Qt specific and full of little details which is
why we do not focus on them. The dialog for adding user-defined pieces as shown in Figure 4.2
is also implemented in this class.

5.3 Diagram pieces
As the name suggests, the DiagramPiece class is used for representing the individual diagram
pieces. The class is instantiated either when a piece is dropped onto the diagram scene, or when a
piece is copied onto the animation scene, or when a diagram is loaded from the Examples menu.
It is a subclass of QGraphicsItem. QGraphicsItem provides a basis for creating custom items which
can be added to QGraphicsScene (our diagram scene, Section 5.4) which is in turn visualised by
QGraphicsView. These classes are part of the Qt’s Graphics View framework.

All three types of a piece, i.e. translators, interpreters and machines, are completely represented
by the DiagramPiece class. The precise type is specified when instantiating the class as one of the
three class variables corresponding to the types. Other than the type, there are straightforward
instance variables that identify the piece’s category, name, languages, tooltip and geometric
properties. There are also Boolean flag instance variables. One to distinguish if the piece is being
animated and another one for flagging situations when the piece is in an invalid position caused
by overlapping with another piece or having mismatched languages at the specific connection
interface. To be able to move the piece back to its previous position after being incorrectly
repositioned, we store this position in an instance variable and update it at every repositioning.
The most interesting are the instance variables relating to how we keep track of the piece’s
connections and how we identify what interfaces, if any, two adjacent pieces meet at. For
the former, we keep three variables that we refer to as links, one for each type of language
(source, target, implementation). Each link holds a reference to another DiagramPiece object
connected at the specific language/interface. For the latter, there are three variables which store
the y-coordinate of each connection interface. If the y-coordinate of source of piece A equals the
y-coordinate of target or implementation of piece B, then the two pieces are connected. Since
the interpreters and machines have no target and the machines also have no implementation
language/interface, it was necessary to set the corresponding variables in those cases to None.
The majority of the functions in theDiagramPiece class are concerned with defining the geometry
of pieces. Painting of pieces is implemented by overriding the paint function of the superclass.
The unique shapes of the three types of pieces are defined as paths (QPainterPath) and returned
from their separate functions. The paths are implemented as sequences of connected lines and
arcs in the clockwise direction with the initial start in the top left corner. Each change of the
angle in the path corresponds to a new line or arc. Although unique, the paths had to be defined
such that the connection interfaces between different shapes are aligned. Other than painting
the shape, the paint function also deals with painting the name and languages of the piece. It also
includes conditionally executed painting of the selection rectangle when a piece is selected and
highlighting when a piece is in an invalid position or being animated. We also overrode the
shape function of the superclass which is used for detection of overlapping pieces. This function
uses another overridden function which defines the bounding rectangle of the entire piece.

28

We only identified the requirement to change the height of translators and interpreters after
implementing their standard shapes. Thus, we had to update the original implementation. Our
solution was to add the heightMultiplier instance variable and update the y-coordinates of all lines
and arcs that are moved by heightening or shortening. Since we designed changing height in
line with grid snapping, the updated y-coordinates are obtained as the product of the height of
the grid rectangle, i.e. half of the default height of the piece, and the heightMultiplier. This simply
means that all lines and arcs that are required to move are shifted by one grid rectangle down for
heightening and up for shortening. A crucial function we had to include in relation to this is
a predefined setter which updates the y-coordinate of the piece’s implementation connection
interface based on the current value of the heightMultiplier. The setter is called every time a
heightening or shortening call occurs. Omitting this would result in incorrectly identifying the
piece’s connections.

5.4 Diagram scene
The diagram scene is implemented in theDiagramScene class which is a subclass ofQGraphicsScene.
Just as QGraphicsScene is responsible for the management of QGraphicsItem objects, our Diagram-
Scene manages the DiagramPiece objects. The class contains only a few instance variables which
are mainly defined for ease of access and having a single reference point to the stored values.
Conversely, it includes 24 functions which corresponds with its management task.

The first group of related functions are reimplementations of the drag and drop event handlers of
the parent class. These functions are responsible for handling only the initial drag and drop of
pieces from the list, not any subsequent repositioning which we discuss in the next paragraph.
The key action when a drag is entered (dragEnterEvent) is to accept only the right type of data, i.e.
a piece in our case. Once the drag is being moved within the scene (dragMoveEvent), we ignore
the event if the mouse pointer goes over an already placed piece. This is one part of preventing
overlapping pieces. There was no need to reimplement leaving the scene during an active drag
(dragLeaveEvent) because it is ignored by default. The handler called when a piece is dropped
(dropEvent) has the most involved implementation out of these functions. It includes the following
steps.

1. Get the current position and piece data from the event.
2. Ask the user to name the piece by displaying a dialog (Figure 4.5).
3. If the user confirmed the dialog:

4. Instantiate DiagramPiece based on the piece data.
5. Check if the piece was not dropped in the bottom row or the rightmost column of

the scene. This would mean having a half of the piece out of bounds. Change the
coordinates to in bounds, if necessary.

6. Place the piece and select it.
7. Check if the piece does not partially overlap with another piece. If it does, call the

invalid position handler which deletes the piece.
8. Call the connecting pieces check algorithm.

In the last step, we referred to the connecting pieces check algorithm. This is an algorithm we
designed as a solution to the problem of verifying that the pieces are connected correctly and
establishing and updating their links. We discuss the algorithm shortly.

The second group of related functions are reimplementations of the mouse event handlers which
are triggered when the mouse input originates in the diagram scene. Unlike the drag and drop
event handlers described in the previous paragraph, these functions are responsible for handling
the repositioning of pieces. When the mouse is clicked (mousePressEvent), we only accept the
event if it was a left-click as right-clicking a piece is handled in DiagramPiece. Since multiple

29

selection of pieces was not a high priority requirement, we also ignore clicking with Ctrl pressed.
When the event is accepted, the key step is to get the piece at the click position and if it exists, store
this position in the piece’s previous position instance variable. This allows the piece to be moved
back if its repositioning is invalid. When the mouse is moving over the scene (mouseMoveEvent),
the event is simply propagated. We could not employ the same approach of ignoring the event
when moving over a piece as in dragMoveEvent because it would be impossible to reposition a
piece by moving it over other pieces. Finalising the repositioning by releasing the mouse button
(mouseReleaseEvent) includes the following steps.

1. If there is a selected piece, i.e. the piece being repositioned:
2. Reposition the piece. If the piece is repositioned out of bounds, move it in bounds. In

this case, we had to cover all four scene edges because there are more ways to achieve
out of bounds repositioning.

3. Check if the piece does not overlap with another piece. If it does, call the invalid
position handler which moves the piece back to its previous position.

4. Call the connecting pieces check algorithm but only if the repositioning changed the
position, i.e. current position != previous position. Calling the algorithm would be
wasteful otherwise.

For both mouseReleaseEvent and dropEvent, the last two steps call the same functions. We use
the parameter initialDrop in both functions to distinguish between the two situations. Having
introduced the two cases when the connecting pieces check algorithm is called, we can now present
the algorithm as pseudocode in Listing 5.1. The algorithm is fairly complex because of having
to deal with all the different ways how pieces can be connected and how the corresponding
situations have to be handled.

1 def checkConnectingPieces(self, piece, initialDrop):
2 """
3 Algorithm which verifies if the placed piece forms valid connections and

handles both valid and invalid cases. In either case, the algorithm ensures
the correct links are stored inside the pieces. The parameter piece is the
placed piece that triggers the algorithm call. It is the only diagram piece
we refer to as ’piece’ in the pseudocode. All other pieces are referred to as
’neighbour’ and there can be zero or more neighbours. For brevity, in a few
steps we use p and n where p == piece, n == neighbour. We refer to three
connection interfaces of piece and neighbour as Source, Target and Implem.
There are three Tasks, each of which corresponds to checking the connection
at the specific interface. The zeroth Task is an edge case. Arrows -> and <-
in comments show the direction of valid connections with piece being the
starting point. The initialDrop parameter is passed to other calls within the
algorithm to distinguish between the initial drag and drop and repositioning.

4 """
5
6 # Get y-coordinate of every connection interface of piece
7 yPieceSource = y-coordinate of Source of piece
8 yPieceTarget = y-coordinate of Target of piece if it exists, else None
9 yPieceImplem = y-coordinate of Implem of piece if it exists, else None
10
11 # Task 0 - Edge case - piece is Machine, it cannot have a right connection
12 neighbour = item at (x,y) == (grid cell right of piece, yPieceSource)
13 if piece is Machine and neighbour exists:
14 yNeighbourSource = y-coordinate of Source of neighbour
15 if yPieceSource == yNeighbourSource:
16 call invalid position handler (also shows the error message)
17 return
18

30

19 # Task 1 - deal with the connection at the Source interface of piece
20 neighbour = item at (x,y) == (grid cell left of piece, yPieceSource)
21 if neighbour exists:
22 yNeighbourTarget = y-coordinate of Target of neighbour
23 yNeighbourImplem = y-coordinate of Implem of neighbour
24
25 if neighbour is Machine:
26 # Case 1 - cannot connect Source of piece to Machine
27 call invalid position handler (also shows the error message)
28 return
29 elif yNeighbourTarget is not None and yPieceSource == yNeighbourTarget:
30 # Case 2 - Source of piece connected to Target of neighbour
31 if Source language of piece == Target language of neighbour:
32 # Target <- Source match
33 disconnect old neighbour of Source (n.targetLink or n.implemLink = None)
34 piece.sourceLink = neighbour
35 neighbour.targetLink = piece
36 else:
37 # Positions of Target and Source match but languages mismatch
38 call invalid position handler (also shows the error message)
39 return
40 elif yPieceSource == yNeighbourImplem:
41 # Case 3 - Source of piece connected to Implem of neighbour
42 same as Case 2 but every instance of Target is replaced by Implem
43 else:
44 # Case 4 - Source of piece not connected to Target or Implem of neighbour
45 disconnect old neighbour of Source (n.targetLink or n.implemLink = None)
46 piece.sourceLink = None
47 else:
48 # Case 5 - Source of piece has no neighbour
49 same as Case 4
50
51 # Task 2 - deal with the connection at the Target interface of piece
52 # Using yPieceSource instead of yPieceTarget in the next line avoids 1 if
53 neighbour = item at (x,y) == (2 grid cells right of piece, yPieceSource)
54 if yPieceTarget exists and neighbour exists:
55 yNeighbourSource = y-coordinate of Source of neighbour
56
57 if yPieceTarget == yNeighbourSource:
58 # Case 1 - Target of piece connected to Source of neighbour
59 if Target language of piece == Source language of neighbour:
60 # Target -> Source match
61 disconnect old neighbour of Target (n.sourceLink = None)
62 piece.targetLink = neighbour
63 neighbour.sourceLink = piece
64 else:
65 # Positions of Target and Source match but languages mismatch
66 call invalid position handler (also shows the error message)
67 return
68 else:
69 # Case 2 - Target of piece not connected to Source of neighbour
70 disconnect old neighbour of Target (n.sourceLink = None)
71 piece.targetLink = None
72 elif yPieceTarget:
73 # Case 3 - Target of piece has no neighbour
74 same as Case 2
75 # Case 4 - do nothing when piece has no Target interface

31

76 # Task 3 - deal with the connection at the Implem interface of piece
77 # No way of avoiding 1 if as in Task 2
78 if yPieceImplem:
79 neighbour = item at (x,y) == (2 grid cells right of piece, yPieceImplem)
80 if neighbour exists:
81 yNeighbourSource = y-coordinate of Source of neighbour
82
83 if yPieceImplem == yNeighbourSource:
84 # Case 1 - Implem of piece connected to Source of neighbour
85 if Implem language of piece == Source language of neighbour:
86 # Implem -> Source match
87 if piece.implemLink != piece.targetLink:
88 # Edge case condition caused by the execution order, the case is
89 # moving from p.Implem -> n.Source to p.Target -> n.Source
90 disconnect old neighbour of Implem (n.sourceLink = None)
91 piece.implemLink = neighbour
92 neighbour.sourceLink = piece
93 else:
94 # Positions of Implem and Source match but languages mismatch
95 if called from change height:
96 call invalid height handler
97 else:
98 call invalid position handler (also shows the error message)
99 else:
100 # Case 2 - Implem of piece not connected to Source of neighbour
101 if piece.implemLink != piece.targetLink:
102 # Same edge case as in Case 1
103 disconnect old neighbour of Implem (n.sourceLink = None)
104 piece.implemLink = None
105 else:
106 # Case 3 - Implem of piece has no neighbour
107 same as Case 2
108 # Case 4 - do nothing when piece has no Implem interface

Listing 5.1: The connecting pieces check algorithm expressed as pseudocode.

We could further describe how we implemented the invalid height and position handlers called
inside the algorithm. However, that would mean going into very concrete implementation
details. One more thing to mention is that the code of Task 3 is in fact written as a separate
function. It is called implemNeighbourCheck and the reason for extracting the code was because the
function is not only called in the algorithm but also in the functions heightenPiece and shortenPiece.
This ensures changing height is only allowed when the connected languages match.

Since animation is implemented by copying the pieces from the diagram scene onto the animation
scene, there is the prepareAnimation function. This function populates and returns two lists - one
with the pieces stored in the animation order and the other with the corresponding text output.
Each animation is prepared (and executed) as breadth-first traversal of the diagram starting at the
piece selected by the user. Figure 5.1 demonstrates the animation order. We implemented this
using a double-ended queue (deque). We start by appending the starting piece to the deque and
keep traversing while the deque is not empty. At each iteration, we remove and return the left
piece from the deque, append to the deque the piece’s target and implementation neighbours if
they exist, prepare the piece’s text output and finally collect the piece and its text in the two lists.

The remaining functions are straightforward implementations of the scene-related actions such as
deleting a piece (removing links is key here), clearing the scene, switching the grid and showing
the appropriate dialog messages.

32

Figure 5.1: An artificial diagram with no languages (to simplify connecting pieces) demonstrating the
animation order as breadth-first traversal of the diagram.

5.5 Animation window
AnimationWidget is the class containing the implementation of the animation window function-
ality. It has “Widget” in its title because it subclasses QWidget. In Qt, a widget which is not
incorporated in another widget becomes a window. The initialisation of this class mostly consists
of laying out the individual animation elements (Section 4.5) and setting up their properties.
Other than the overridden event handler which ensures no references to the window are kept
once it is closed (closeEvent), all functions in the class are either slots or utility functions called
from within the slots. In Qt, slots are functions called as a result of an event emitting a signal. In
this case, the event is the user pressing one of the play control buttons. There is a unique slot
connected to each of the five buttons. The implementation of the slots uses a Boolean flag to
execute actions conditionally depending on if the animation is playing or not. Highlighting and
dehighlighting of the correct piece and showing the right text output is based on an integer
instance variable used to index the list of pieces in the animation order. Both variables are updated
in the slots such that the functionality is in line with the behaviour described in Section 4.5. When
the animation is playing, the break between the steps is set to 1 second. The implementation of
this uses the function singleShot from the QTimer class, not the sleep function of Python which
would freeze the entire program because of suspending the event loop of Qt. Figure 5.2 shows
the final implementation of the animation window.

Figure 5.2: The final implementation of the animation window showing the execution of a Python
program. Note that the animation is paused at the penultimate step.

33

5.6 Main window
Unsurprisingly, the main window is implemented in theMainWindow class which is a subclass of
QMainWindow. The initialisation of course includes instantiating the diagram scene and the list
of pieces and creating the menu bar, toolbar and actions which are triggered from these widgets
or through the keyboard shortcuts.

We identified in Requirement 29 that the exported diagrams should use a common format which
is human-readable and editable. To fulfil the requirement, our implementation exports the
diagrams as JSON. The exportDiagram function exports every piece in the diagram scene. This is
done by iterating over the scene pieces and in each iteration, appending a dictionary with the
piece data to the list representing the full JSON. The user is then prompted for a file name which
is where the JSON is dumped. An example of exported diagram file is shown in Listing A.2.

Each diagram we included in the Examples menu was created manually, then exported and set
up to load after clicking on the corresponding menu action. In a sense, we bootstrapped our own
examples! We included simple examples such as an interpretation and compilation of a program
as well as more complex multistage diagrams involving bootstrapping. The list of all 15 examples
is shown in Figure 5.3.

Figure 5.3: The list of predefined example diagrams available in our software.

When a diagram is imported directly or loaded from the Examples menu, our implementation
uses the function addPiecesFromJSON which simply iterates over the JSON representation of the
pieces, uses the data to create the corresponding DiagramPiece objects and adds the pieces to the
diagram scene. Since the links between pieces are run-time references, they are not stored in
the JSON. Because of this, it is crucial to call the connecting pieces check algorithm (Section 5.4) to
establish the links and thus enable the animation to work correctly. This also ensures that any
manual JSON edits are verified by the system.

In Requirement 26, we aimed to make the Examples menu extensible by the user. We accom-
plished this and all the user needs to do is place a previously exported diagram in the examples
directory found in the main directory. It is necessary to restart the program for any new examples
to appear in the menu. Sharing the entire examples directory with other users means having the
ability to work easily with the same examples. Our implementation of this feature is surprisingly
simple. When the program is launched, we get the path of the examples directory using the
pathlib module of Python, iterate over the files within, store their paths and names in lists which
are used when creating the actions of the menu bar that load the individual examples. This could
be extended to allow refreshing of examples from within the menu so the user would not need to
restart the program.

34

The saveScene function is also implemented in this class. Based on the user’s choice, the function
renders the diagram scene into an SVG or PNG image and saves it in a file. Our implementation
saves the scene as the bounding rectangle of all pieces, not the entire available scene, and auto-
matically removes the grid from the image. We could have implemented this function in the
DiagramScene class but we chose to keep all input/output functions in the parent MainWindow
class.

In Section 4.2, we described the design of adding user-defined pieces. It made sense to extend
the implementation of this (Section 5.2) so that the pieces could be automatically saved and
loaded, thus providing persistence across executions. When the user closes the main window, the
closeEvent handler is called. In this function, using a Boolean flag, we check if the user added any
custom pieces which we collect in the PiecesTree class in a dictionary of categories and lists of
pieces. If so, the user is shown a dialog giving them an option to save the pieces. If they press Yes,
we load the custom_pieces JSON file stored in the main directory, append to it the new custom
pieces and save it. Hence, the file is a config file used for storing all added pieces. An example
of the file is shown in Listing A.3. Our implementation choices allow the user to edit the file
manually and share it with other users. To offer further flexibility, all custom pieces can be
removed from the program by simply deleting the custom_pieces file. The default, empty version
of the file is automatically created at launch if it does not exist. Implementing the functionality
described in this paragraph was a realisation of Requirements 33 and 34. Note that the last step in
the closeEvent function is unrelated to this functionality and its purpose is to close all animation
windows before the main window is finally closed.

Figure 5.4 shows the final implementation of the main window with a multistage bootstrapping
example loaded.

Figure 5.4: The final implementation of the main window. The diagram illustrates bootstrapping an
interpretive compiler to produce machine code.

35

6 Evaluation

This chapter demonstrates how we evaluated our software using two independent evaluation
methods. We first focus on our evaluation through usability heuristics and in the second section,
we present the results of our user study. The first method was used whenever an individual
feature was designed and implemented. The user study was conducted after fully implementing
the software.

6.1 Evaluation through usability heuristics
In this method, we followed “10 general principles for interaction design” as introduced and
updated by Nielsen (1994, 2020). We demonstrate how we transformed each principle into our
software with one or more examples.

1. Visibility of system status
• After adding a custom piece, feedback is given to the user by scrolling to the new
piece and selecting it.

• When a piece is clicked in the list of pieces, the piece is highlighted in light blue.
• When a piece is placed such that it overlaps or has mismatched languages with another
piece, the culprit is highlighted red.

• When a diagram is loaded or imported, the view is focused on it. Without this, the
user could be in a different part of the view and thus would not know the diagram
appeared in the scene.

2. Match between system and the real world
• In the list of pieces, all languages for the particular piece are presented together in
one row and not in separate steps. This matches the essence of the corresponding
language processor.

• Using the word “pieces” for the elements of diagrams. This is an allusion to jigsaw
puzzle pieces which are connected in a similar way.

3. User control and freedom
• Every dialog gives the user an option to reject or cancel the interaction.
• The ability to remove all custom pieces.

4. Consistency and standards
• When a custom piece is added, it can be found in the same place in future launches.
• Disallowed dragging of pieces within the list of pieces also ensures consistent positions.
• All error messages follow a consistent format.
• Keyboard shortcuts follow conventions, e.g. Ctrl+X for Exit, Ctrl+O for Import, F1
for Guide.

36

5. Error prevention
• Invalid positioning and invalid height changes of pieces resulting from mismatched
languages or overlapping pieces are disallowed.

• Meaningless actions such as changing the height of machines or exporting an empty
scene are disallowed.

• When adding a custom piece, the language fields that are not needed are inactive.
• The connecting pieces check algorithm is called when a diagram is loaded or imported
to verify any manual edits to the diagram file.

• Before committing to a destructive action such as wiping a diagram, a confirmation
dialog is shown.

6. Recognition rather than recall
• The use of icons chosen to represent the underlying actions meaningfully.

7. Flexibility and efficiency of use
• The inclusion of toolbar and keyboard shortcuts in addition to the menu bar.

8. Aesthetic and minimalist design
• Simple design which enables the functionality and does not distract with fancy
graphics.

• Toolbar excluding the rarely needed Help menu actions.
• Diagramming available immediately after launching the program.

9. Help users recognize, diagnose, and recover from errors
• No references to implementation/code details in the error messages.
• The error messages consisting of an informative title, explanation why the error
occurred and how it will be rectified.

10. Help and documentation
• The inclusion of the video and text guide, both of which are presented in sections by
using video chapters and text headings.

6.2 Evaluation through user study
In our user study, we collected qualitative data using a survey. The aim of the survey was
to evaluate our software as a whole by asking the potential users for their opinion. Prior to
conducting the study, we familiarised ourselves with the ethics checklist for the honours individual
projects involving participants. We designed the study such that all conditions of the checklist
were met. The signed ethics form is included as Appendix B.1. Our survey started with an
introduction script where we stated the aim of the study and explained how it would proceed.
Before continuing, the participants were asked to confirm they understood the introductory
information and that they agreed to take part. We embedded a video in the survey in which we
demonstrated our software. The participants were asked to watch the video and answer several
questions in the Likert scale, yes-no, or text input format. We concluded the survey with a pair
of demographic questions and a debriefing script. The entire survey is included as Appendix B.2.
We distributed our survey to the Year 3 and 4 Computing Science students at the University of
Glasgow. We managed to collect responses from eight participants, seven of which have taken
the Programming Languages course. The results were as follows.

37

The level of familiarity with tombstone diagrams was above average with five participants
choosing the answer “familiar” on a five-point Likert scale. One participant was “very familiar”
and two chose the neutral option. This distribution is visualised in Figure 6.1a. It was very
encouraging to find that all participants thought that animation is a useful educational tool. This
justified the point of our project. These two questions were asked before the video demonstration.
It was also encouraging to find that the functionality provided by our software was rated as
“excellent”. Seven participants chose this option. The last participant answered “very good” as
visualised in Figure 6.1b. We extended this question by asking the participant what they would
change about the functionality. Three participants would not change anything, one participant
would add the possibility to toggle the grid on and off which is already possible. The remaining
participants provided the following comments.

1. Incorporate some gamification and tutorials in which users would have to complete the
holes in diagrams to learn about J-diagrams and processing pipelines.

2. The ability to continue an animation by transferring a state (as was done manually in the
last diagram).

3. Filter pieces by language/architecture.
4. Check for invalid placement before prompting to enter name when inserting a new piece -

fail early.
5. The pop-ups displaying errors might become annoying. Highlighting the object red and

marking it with a label explaining the invalid operation might be more user friendly. The
object could then revert back to normal once the user is no longer performing an invalid
operation with it.

The comments 1-4 are excellent suggestions that we would take further as future work. The first
part of the comment 5 is something that did occur to us. The logic behind our design was that
we needed to give the user explicit feedback so that they could learn. The suggested alternative
could be implemented such that the label is an exclamation mark icon placed in the middle of a
piece and hovering over it would display the error. This is certainly something worth looking
into but would require some time since it would require numerous changes to the existing code.

(a) Question 3

(b) Question 5

Figure 6.1: The distribution of answers to Question 3 and 5 in our user study.

38

Our design was not rated as highly as the functionality. Four participants rated the design as
“excellent”, three as “very good” and one as “good”. Figure 6.2 visualises this distribution. One
participant said the designed looked “fine for its purpose” but “designed in 2000-2010”. While
we acknowledge that our design may not be award-winning, the point was not to create the
most beautiful product to attract customers. The point was to create a design that would support
the functionality. Additionally, a more complex design would go against the philosophy of
minimalist design we chose to follow (Usability Heuristic 8). Four participants provided concrete
suggestions how the design could be changed. One person would like to be able to choose
the colour of pieces “for visual clarity in larger diagrams”. This is something which could be
implemented easily. However, there would be a danger of clashing colours when highlighting
invalid positions or animating. The remaining comments were about a different design for the
list of pieces. The consensus was that there should be more filtering options which we agree with.
One suggestions was to have a design similar to the alternative presented in the last paragraph of
Section 4.1.

Figure 6.2: The distribution of answers to Question 7 in our user study.

After the questions about the functionality and design, we showed the participants the list of
predefined examples included in the program and asked them if they thought the examples
demonstrated a varied range of concepts. All but one participant answered yes.

We recorded the demonstration video included in the survey such that it would be used as the
software guide. Hence, we asked if the participants considered the video format of the guide
appropriate. Five participants were happy with the video. The rest would prefer to have both
video and text guide. Both formats are included in the program and the answers confirm our
decision was correct. The guides are attached in Appendix C.

Since our software uses a new design of tombstone diagrams, we wanted to know how the partici-
pants felt about the J-diagrams notation. Six participants felt that J-diagrams were straightforward
and an improvement on T-diagrams. This is very encouraging and reaffirms the point we made
in Section 2.2 about the ease of transitioning from T-diagrams to J-diagrams. One participant
said they were unfamiliar with J-diagrams which is not surprising considering the notation is
less than a year old. The participant would like to look into J-diagrams. However, they also
suggested the feature of switching between the two notations. This is not a good idea because it
would mean going back to the problems of T-diagrams. If there were serious problems with
J-diagrams, e.g. the users disliking the fact that the output is implicit, they should be rectified in
that notation. The last participant found J-diagrams more confusing which would be interesting
to investigate further.

The responses to the final question revealed that seven participants would use the program if
it were incorporated into the Programming Languages course. However, two answers were
conditioned on the amount of content related to J-diagrams. The last participant would “maybe”
use the program “a bit” and thought the diagramming was sufficient enough and the animation
did not add much. This could be because the participant already understood the concepts and
would only benefit from using the program as a revision tool.

39

7 Conclusion

7.1 Summary
The goal of our project was to create a piece of software that would enable the user to create and
animate arbitrary tombstone diagrams.

In Chapter 2, after introducing the concepts relevant to the diagrams, we demonstrated how
the J-diagrams notation improved the traditional T-diagrams. Hence, our choice to use the
improved notation in our software. We explored animation as an educational tool and found that
it was effective. In our related software research, we found there was no software for animating
tombstone diagrams, hence validating our project.

In Chapter 3, we presented the concrete individual requirements for the project which were
categorised using the MoSCoW prioritisation technique. We also identified four types of users
of our software and summarised them through user stories.

In Chapter 4 and 5, we described howwe designed and implemented the individual elements of the
software and how we combined them into the overall product. We met the project requirements
by implementing all “Must have” and “Should have” requirements listed in Section 3.1. We also
implemented Requirement 37 from the “Could have” category. This corresponded to 35 out of
50 requirements.

In Chapter 6, we demonstrated how we evaluated our software through usability heuristics and
a user study. We found that all participants thought animation was a useful educational tool. The
functionality of our software was rated on average at 4.88 out of 5 and the design at 4.38 out
of 5. The participants made useful suggestions for future work. The key focus should be on
improving the list of pieces with filtering options and making it possible to animate multistage
diagrams in a single animation window. A key finding was that the majority of participants found
J-diagrams straightforward. Hence, we would suggest that they are used instead of T-diagrams
in the courses involving language processors. The majority of the participants would also use our
software if it were a part of the Programming Languages course at the University of Glasgow.
Our software has not been distributed yet but we will make it available to the students of the
course as well as the computing science public after May 2021.

7.2 Reflection
This project was the biggest individual piece of work we have ever undertaken. Thanks to a
thorough background research, we have improved our knowledge of language processors. The
development of our software included a mixture of user interface design, program structure
design, algorithm creation and writing the corresponding code. All of these are invaluable
skills. We have improved not only in Qt/PySide2 programming but also in studying official
documentation which was necessary throughout the implementation process. Conducting a user
evaluation, thanks to which we obtained useful comments, reminded us about the importance of
that step. Other than creating a useful program as a whole, the biggest individual achievement
was the implementation of the connecting pieces check algorithm.

40

Although we can say the project was a success, there are things we wish we could have done better.
All our testing was done as usability testing. It would be beneficial to have some automatic tests
as well. However, this is always a challenge when testing something as interactive as a graphical
user interface. Despite the project not being classified as a software engineering project, we tried
to follow software engineering best practices as much as possible. We wrote self-documenting
code through appropriate naming but we were unable to include Python docstrings in every
function due to the sheer number of functions. This is a non-functional requirement for future
work. Unfortunately, our skills prior to the project did not allow us to implement the program
directly with Qt in C++. Functionality-wise, there would have been no difference. There would
not have been much of a performance difference either. However, developing in C++ would
contribute immensely to our personal development. Finally, we would have liked to conduct the
user study in person and with more participants. This was not possible due to the COVID-19
restrictions.

7.3 Future work
The first group of suggestions for future work is the unimplemented “Could have” and “Won’t
have this time” requirements from Section 3.1 except those we explicitly rejected in Chapter
4. This would mean implementing Requirements 35, 36, 38-40, 42-44 and 46-49. The second
group is the suggestions 1-5 made by the user study participants. Other suggestions we make are
as follows.

• A search bar at the top of the list of pieces.
• Allow the user, e.g. a lecturer, to define the animation text.
• An option to insert text to the diagram scene. This could be implemented as a free form
text box. It would not snap to the grid and could be positioned freely anywhere near the
pieces. It would be useful for labelling pieces and providing descriptions in a more flexible
way than only through the names.

• Deleting pieces from the list of pieces using a keyboard or mouse right-click.
• Optimisations to the JSON files. Rather than storing “-” for every interpreter and machine,
the files could be changed to store only the required languages and add “-” programmatically.
This would save storage. On the other hand, this would not correspond to the representation
of the pieces and the file size is unlikely to be too large in the first place.

41

A Code and Data Listings

1{
2 "Compilers": [
3 (".NET", "Bytecode", ".NET"),
4 (".NET", "Bytecode", "ARM"),
5 (".NET", "Bytecode", "x86"),
6 ("ALGOL", "ARM", "ALGOL"),
7 ("ALGOL", "ARM", "ARM"),
8 ("ALGOL", "x86", "ALGOL"),
9 ("ALGOL", "x86", "x86"),
10 ("Ada", "ARM", "ARM"),
11 ("Ada", "ARM", "Ada"),
12 ("Ada", "x86", "Ada"),
13 ("Ada", "x86", "x86"),
14 ("BASIC", "ARM", "ARM"),
15 ("BASIC", "ARM", "BASIC"),
16 ("BASIC", "x86", "BASIC"),
17 ("BASIC", "x86", "x86"),
18 ("C", "ARM", "ARM"),
19 ("C", "ARM", "C"),
20 ("C", "x86", "C"),
21 ("C", "x86", "x86"),
22 ("C#", "ARM", "ARM"),
23 ("C#", "ARM", "C#"),
24 ("C#", "Bytecode", "ARM"),
25 ("C#", "Bytecode", "C#"),
26 ("C#", "Bytecode", "x86"),
27 ("C#", "x86", "C#"),
28 ("C#", "x86", "x86"),
29 ("C ", "ARM", "ARM"),
30 ("C ", "ARM", "C "),
31 ("C ", "x86", "C "),
32 ("C ", "x86", "x86"),
33 ("COBOL", "ARM", "ARM"),
34 ("COBOL", "ARM", "COBOL"),
35 ("COBOL", "x86", "COBOL"),
36 ("COBOL", "x86", "x86"),
37 ("Erlang", "ARM", "ARM"),
38 ("Erlang", "ARM", "Erlang"),
39 ("Erlang", "Bytecode", "ARM"),
40 ("Erlang", "Bytecode", "Erlang"),
41 ("Erlang", "Bytecode", "x86"),
42 ("Erlang", "x86", "Erlang"),
43 ("Erlang", "x86", "x86"),
44 ("Fortran", "ARM", "ARM"),
45 ("Fortran", "ARM", "Fortran"),
46 ("Fortran", "x86", "Fortran"),

42

47 ("Fortran", "x86", "x86"),
48 ("Go", "ARM", "ARM"),
49 ("Go", "ARM", "Go"),
50 ("Go", "x86", "Go"),
51 ("Go", "x86", "x86"),
52 ("Haskell", "ARM", "ARM"),
53 ("Haskell", "ARM", "Haskell"),
54 ("Haskell", "Bytecode", "ARM"),
55 ("Haskell", "Bytecode", "Haskell"),
56 ("Haskell", "Bytecode", "x86"),
57 ("Haskell", "x86", "Haskell"),
58 ("Haskell", "x86", "x86"),
59 ("Java", "ARM", "ARM"),
60 ("Java", "ARM", "Java"),
61 ("Java", "Bytecode", "ARM"),
62 ("Java", "Bytecode", "Java"),
63 ("Java", "Bytecode", "x86"),
64 ("Java", "x86", "Java"),
65 ("Java", "x86", "x86"),
66 ("Lisp", "ARM", "ARM"),
67 ("Lisp", "ARM", "Lisp"),
68 ("Lisp", "Bytecode", "ARM"),
69 ("Lisp", "Bytecode", "Lisp"),
70 ("Lisp", "Bytecode", "x86"),
71 ("Lisp", "x86", "Lisp"),
72 ("Lisp", "x86", "x86"),
73 ("Lua", "Bytecode", "ARM"),
74 ("Lua", "Bytecode", "Lua"),
75 ("Lua", "Bytecode", "x86"),
76 ("ML", "ARM", "ARM"),
77 ("ML", "ARM", "ML"),
78 ("ML", "x86", "ML"),
79 ("ML", "x86", "x86"),
80 ("ObjectiveC", "ARM", "ARM"),
81 ("ObjectiveC", "ARM", "ObjectiveC"),
82 ("ObjectiveC", "x86", "ObjectiveC"),
83 ("ObjectiveC", "x86", "x86"),
84 ("Pascal", "ARM", "ARM"),
85 ("Pascal", "ARM", "Pascal"),
86 ("Pascal", "x86", "Pascal"),
87 ("Pascal", "x86", "x86"),
88 ("Python", "Bytecode", "ARM"),
89 ("Python", "Bytecode", "Python"),
90 ("Python", "Bytecode", "x86"),
91 ("Rust", "ARM", "ARM"),
92 ("Rust", "ARM", "Rust"),
93 ("Rust", "x86", "Rust"),
94 ("Rust", "x86", "x86"),
95 ("Scala", "ARM", "ARM"),
96 ("Scala", "ARM", "Scala"),
97 ("Scala", "Bytecode", "ARM"),
98 ("Scala", "Bytecode", "Scala"),
99 ("Scala", "Bytecode", "x86"),
100 ("Scala", "x86", "Scala"),
101 ("Scala", "x86", "x86"),
102 ("Swift", "ARM", "ARM"),
103 ("Swift", "ARM", "Swift"),

43

104 ("Swift", "x86", "Swift"),
105 ("Swift", "x86", "x86"),
106],
107 "Assemblers": [
108 ("ARM asm", "ARM", "ARM"),
109 ("MIPS asm", "MIPS", "MIPS"),
110 ("PPC asm", "PPC", "PPC"),
111 ("SPARC asm", "SPARC", "SPARC"),
112 ("x86 asm", "x86", "x86"),
113],
114 "Decompilers": [
115 ("ARM", "ALGOL", "ALGOL"),
116 ("ARM", "ALGOL", "ARM"),
117 ("ARM", "Ada", "ARM"),
118 ("ARM", "Ada", "Ada"),
119 ("ARM", "BASIC", "ARM"),
120 ("ARM", "BASIC", "BASIC"),
121 ("ARM", "C", "ARM"),
122 ("ARM", "C", "C"),
123 ("ARM", "C#", "ARM"),
124 ("ARM", "C#", "C#"),
125 ("ARM", "C ", "ARM"),
126 ("ARM", "C ", "C "),
127 ("ARM", "COBOL", "ARM"),
128 ("ARM", "COBOL", "COBOL"),
129 ("ARM", "Erlang", "ARM"),
130 ("ARM", "Erlang", "Erlang"),
131 ("ARM", "Fortran", "ARM"),
132 ("ARM", "Fortran", "Fortran"),
133 ("ARM", "Go", "ARM"),
134 ("ARM", "Go", "Go"),
135 ("ARM", "Haskell", "ARM"),
136 ("ARM", "Haskell", "Haskell"),
137 ("ARM", "Java", "ARM"),
138 ("ARM", "Java", "Java"),
139 ("ARM", "Lisp", "ARM"),
140 ("ARM", "Lisp", "Lisp"),
141 ("ARM", "ML", "ARM"),
142 ("ARM", "ML", "ML"),
143 ("ARM", "ObjectiveC", "ARM"),
144 ("ARM", "ObjectiveC", "ObjectiveC"),
145 ("ARM", "Pascal", "ARM"),
146 ("ARM", "Pascal", "Pascal"),
147 ("ARM", "Rust", "ARM"),
148 ("ARM", "Rust", "Rust"),
149 ("ARM", "Scala", "ARM"),
150 ("ARM", "Scala", "Scala"),
151 ("ARM", "Swift", "ARM"),
152 ("ARM", "Swift", "Swift"),
153 ("Bytecode", ".NET", ".NET"),
154 ("Bytecode", ".NET", "ARM"),
155 ("Bytecode", ".NET", "x86"),
156 ("Bytecode", "C#", "ARM"),
157 ("Bytecode", "C#", "C#"),
158 ("Bytecode", "C#", "x86"),
159 ("Bytecode", "Erlang", "ARM"),
160 ("Bytecode", "Erlang", "Erlang"),

44

161 ("Bytecode", "Erlang", "x86"),
162 ("Bytecode", "Haskell", "ARM"),
163 ("Bytecode", "Haskell", "Haskell"),
164 ("Bytecode", "Haskell", "x86"),
165 ("Bytecode", "Java", "ARM"),
166 ("Bytecode", "Java", "Java"),
167 ("Bytecode", "Java", "x86"),
168 ("Bytecode", "Lisp", "ARM"),
169 ("Bytecode", "Lisp", "Lisp"),
170 ("Bytecode", "Lisp", "x86"),
171 ("Bytecode", "Lua", "ARM"),
172 ("Bytecode", "Lua", "Lua"),
173 ("Bytecode", "Lua", "x86"),
174 ("Bytecode", "Python", "ARM"),
175 ("Bytecode", "Python", "Python"),
176 ("Bytecode", "Python", "x86"),
177 ("Bytecode", "Scala", "ARM"),
178 ("Bytecode", "Scala", "Scala"),
179 ("Bytecode", "Scala", "x86"),
180 ("x86", "ALGOL", "ALGOL"),
181 ("x86", "ALGOL", "x86"),
182 ("x86", "Ada", "Ada"),
183 ("x86", "Ada", "x86"),
184 ("x86", "BASIC", "BASIC"),
185 ("x86", "BASIC", "x86"),
186 ("x86", "C", "C"),
187 ("x86", "C", "x86"),
188 ("x86", "C#", "C#"),
189 ("x86", "C#", "x86"),
190 ("x86", "C ", "C "),
191 ("x86", "C ", "x86"),
192 ("x86", "COBOL", "COBOL"),
193 ("x86", "COBOL", "x86"),
194 ("x86", "Erlang", "Erlang"),
195 ("x86", "Erlang", "x86"),
196 ("x86", "Fortran", "Fortran"),
197 ("x86", "Fortran", "x86"),
198 ("x86", "Go", "Go"),
199 ("x86", "Go", "x86"),
200 ("x86", "Haskell", "Haskell"),
201 ("x86", "Haskell", "x86"),
202 ("x86", "Java", "Java"),
203 ("x86", "Java", "x86"),
204 ("x86", "Lisp", "Lisp"),
205 ("x86", "Lisp", "x86"),
206 ("x86", "ML", "ML"),
207 ("x86", "ML", "x86"),
208 ("x86", "ObjectiveC", "ObjectiveC"),
209 ("x86", "ObjectiveC", "x86"),
210 ("x86", "Pascal", "Pascal"),
211 ("x86", "Pascal", "x86"),
212 ("x86", "Rust", "Rust"),
213 ("x86", "Rust", "x86"),
214 ("x86", "Scala", "Scala"),
215 ("x86", "Scala", "x86"),
216 ("x86", "Swift", "Swift"),
217 ("x86", "Swift", "x86"),

45

218],
219 "Disassemblers": [
220 ("ARM", "ARM asm", "ARM"),
221 ("MIPS", "MIPS asm", "MIPS"),
222 ("PPC", "PPC asm", "PPC"),
223 ("SPARC", "SPARC asm", "SPARC"),
224 ("x86", "x86 asm", "x86"),
225],
226 "Transpilers": [
227 (".NET", "JavaScript", "ARM"),
228 (".NET", "JavaScript", "x86"),
229 ("C", "JavaScript", "ARM"),
230 ("C", "JavaScript", "x86"),
231 ("C", "Rust", "ARM"),
232 ("C", "Rust", "x86"),
233 ("C#", "JavaScript", "ARM"),
234 ("C#", "JavaScript", "x86"),
235 ("C ", "C", "ARM"),
236 ("C ", "C", "x86"),
237 ("C ", "JavaScript", "ARM"),
238 ("C ", "JavaScript", "x86"),
239 ("CoffeeScript", "JavaScript", "ARM"),
240 ("CoffeeScript", "JavaScript", "x86"),
241 ("Go", "JavaScript", "ARM"),
242 ("Go", "JavaScript", "x86"),
243 ("Haskell", "C", "ARM"),
244 ("Haskell", "C", "x86"),
245 ("Java", "JavaScript", "ARM"),
246 ("Java", "JavaScript", "x86"),
247 ("Java", "Objective-C", "ARM"),
248 ("Java", "Objective-C", "x86"),
249 ("Lua", "JavaScript", "ARM"),
250 ("Lua", "JavaScript", "x86"),
251 ("Objective-C", "Swift", "ARM"),
252 ("Objective-C", "Swift", "x86"),
253 ("Perl", "JavaScript", "ARM"),
254 ("Perl", "JavaScript", "x86"),
255 ("Python", "Java", "ARM"),
256 ("Python", "Java", "x86"),
257 ("Python", "JavaScript", "ARM"),
258 ("Python", "JavaScript", "x86"),
259 ("Python2", "Python3", "ARM"),
260 ("Python2", "Python3", "x86"),
261 ("Ruby", "JavaScript", "ARM"),
262 ("Ruby", "JavaScript", "x86"),
263 ("Rust", "JavaScript", "ARM"),
264 ("Rust", "JavaScript", "x86"),
265 ("Scala", "JavaScript", "ARM"),
266 ("Scala", "JavaScript", "x86"),
267 ("TypeScript", "JavaScript", "ARM"),
268 ("TypeScript", "JavaScript", "x86"),
269],
270 "Interpreters": [
271 ("BASIC", "-", "ARM"),
272 ("BASIC", "-", "x86"),
273 ("Bytecode", "-", "ARM"),
274 ("Bytecode", "-", "C"),

46

275 ("Bytecode", "-", "C "),
276 ("Bytecode", "-", "x86"),
277 ("Haskell", "-", "ARM"),
278 ("Haskell", "-", "x86"),
279 ("Java", "-", "ARM"),
280 ("Java", "-", "x86"),
281 ("JavaScript", "-", "ARM"),
282 ("JavaScript", "-", "x86"),
283 ("Lisp", "-", "ARM"),
284 ("Lisp", "-", "x86"),
285 ("Lua", "-", "ARM"),
286 ("Lua", "-", "x86"),
287 ("MATLAB", "-", "ARM"),
288 ("MATLAB", "-", "x86"),
289 ("OCaml", "-", "ARM"),
290 ("OCaml", "-", "x86"),
291 ("Perl", "-", "ARM"),
292 ("Perl", "-", "x86"),
293 ("Python", "-", "ARM"),
294 ("Python", "-", "x86"),
295 ("R", "-", "ARM"),
296 ("R", "-", "x86"),
297 ("Ruby", "-", "ARM"),
298 ("Ruby", "-", "x86"),
299],
300 "Machines": [
301 ("ARM", "-", "-"),
302 ("MIPS", "-", "-"),
303 ("PPC", "-", "-"),
304 ("SPARC", "-", "-"),
305 ("x86", "-", "-"),
306],
307}

Listing A.1: The dictionary storing all default pieces. It was created through an automated approach as
described in Section 5.2. The order in the tuples is: source, target, implementation language.

47

1[
2 {
3 "x": 4600.0,
4 "y": 4800.0,
5 "type": 2,
6 "category": "machine",
7 "name": "my PC",
8 "languages": ["x86", "-", "-"],
9 "height": 1
10 },
11 {
12 "x": 4800.0,
13 "y": 4720.0,
14 "type": 2,
15 "category": "machine",
16 "name": "my PC",
17 "languages": ["x86", "-", "-"],
18 "height": 1
19 },
20 {
21 "x": 4600.0,
22 "y": 4640.0,
23 "type": 1,
24 "category": "interpreter",
25 "name": "CPython VM",
26 "languages": ["Bytecode", "-", "x86"],
27 "height": 1
28 },
29 {
30 "x": 4400.0,
31 "y": 4640.0,
32 "type": 0,
33 "category": "compiler",
34 "name": "CPython compiler",
35 "languages": ["Python", "Bytecode", "x86"],
36 "height": 2
37 }
38]

Listing A.2: JSON representation of an exported diagram. The diagram is the one shown in Figure 5.2.

1{
2 "Compilers": [["OCaml", "x86", "C"], ["Java 11", "Bytecode", "Java 10"]],
3 "Assemblers": [["Itanium asm", "Itanium", "Itanium"]],
4 "Decompilers": [],
5 "Disassemblers": [],
6 "Transpilers": [["Haskell", "C", "Java"]],
7 "Interpreters": [["Python", "-", "C"]],
8 "Machines": [["Itanium", "-", "-"]]
9}

Listing A.3: An example of user-defined pieces stored in the custom_pieces JSON file.

48

B User study documents

B.1 Ethics form

School of Computing Science
University of Glasgow

Ethics checklist form for 3rd/4th/5th year, and taught MSc projects

1. Participants were not exposed to any risks greater than those encountered in their normal working

life.
Investigators have a responsibility to protect participants from physical and mental harm
during the investigation. The risk of harm must be no greater than in ordinary life. Areas of
potential risk that require ethical approval include, but are not limited to, investigations that
occur outside usual laboratory areas, or that require participant mobility (e.g. walking,
running, use of public transport), unusual or repetitive activity or movement, that use sensory
deprivation (e.g. ear plugs or blindfolds), bright or flashing lights, loud or disorienting noises,
smell, taste, vibration, or force feedback

2. The experimental materials were paper-based, or comprised software running on standard hardware.

Participants should not be exposed to any risks associated with the use of non-standard
equipment: anything other than pen-and-paper, standard PCs, laptops, iPads, mobile phones
and common hand-held devices is considered non-standard.

3. All participants explicitly stated that they agreed to take part, and that their data could be used in the

project.
If the results of the evaluation are likely to be used beyond the term of the project (for
example, the software is to be deployed, or the data is to be published), then signed consent is
necessary. A separate consent form should be signed by each participant.

Otherwise, verbal consent is sufficient, and should be explicitly requested in the introductory
script.

4. No incentives were offered to the participants.

The payment of participants must not be used to induce them to risk harm beyond that which
they risk without payment in their normal lifestyle.

49

5. No information about the evaluation or materials was intentionally withheld from the participants.

Withholding information or misleading participants is unacceptable if participants are likely to
object or show unease when debriefed.

6. No participant was under the age of 16.

Parental consent is required for participants under the age of 16.

7. No participant has an impairment that may limit their understanding or communication.
Additional consent is required for participants with impairments.

8. Neither I nor my supervisor is in a position of authority or influence over any of the participants.

A position of authority or influence over any participant must not be allowed to pressurise
participants to take part in, or remain in, any experiment.

9. All participants were informed that they could withdraw at any time.

All participants have the right to withdraw at any time during the investigation. They should be
told this in the introductory script.

10. All participants have been informed of my contact details.

All participants must be able to contact the investigator after the investigation. They should be
given the details of both student and module co-ordinator or supervisor as part of the
debriefing.

11. The evaluation was discussed with all the participants at the end of the session, and all participants

had the opportunity to ask questions.
The student must provide the participants with sufficient information in the debriefing to
enable them to understand the nature of the investigation. In cases where remote participants
may withdraw from the experiment early and it is not possible to debrief them, the fact that
doing so will result in their not being debriefed should be mentioned in the introductory text.

12. All the data collected from the participants is stored in an anonymous form.

All participant data (hard-copy and soft-copy) should be stored securely, and in anonymous
form.

Project title: Animation of tombstone diagrams

Student’s Name: Michal Broos

Student Number: 2330994B

Student’s Signature: Signed digitally

Supervisor’s Name: Dr Ornela Dardha

Date: 02/04/2021

Ethics checklist for projects

50

B.2 Survey

51

52

53

54

55

56

57

C Guides

C.1 Video guide
The video guide is available at https://www.youtube.com/watch?v=_Oj6TEqbuek

C.2 Text guide

The text guide continues on the next page.

https://www.youtube.com/watch?v=_Oj6TEqbuek

58

59

Bibliography

Agile Business Consortium (2021), ‘Chapter 10: MoSCoW Prioritisation’, https://www.
agilebusiness.org/page/ProjectFramework_10_MoSCoWPrioritisation. Last ac-
cessed: 2021-02-27.

Bratman, H. (1961), ‘An Alternate Form of the “UNCOL Diagram”’, Commun. ACM 4(3), 142.
URL: https://doi.org/10.1145/366199.366249

Burkhardt, W. H. (1965), Universal Programming Languages and Processors: A Brief Survey and
New Concepts, in ‘Proceedings of the November 30–December 1, 1965, Fall Joint Computer
Conference, Part I’, AFIPS ’65 (Fall, part I), Association for Computing Machinery, New
York, NY, USA, p. 1–21.
URL: https://doi.org/10.1145/1463891.1463893

Earley, J. and Sturgis, H. (1970), ‘A Formalism for Translator Interactions’, Commun. ACM
13(10), 607–617.
URL: https://doi.org/10.1145/355598.362740

Fleischer, R. and Kučera, L. (2002), Algorithm Animation for Teaching, in ‘Software Visualiza-
tion’, Springer Berlin Heidelberg, pp. 113–128.
URL: https://link.springer.com/chapter/10.1007/3-540-45875-1_9

Galles, D. (2011), ‘Data Structure Visualizations’, https://www.cs.usfca.edu/~galles/
visualization/Algorithms.html. Last accessed: 2021-03-27.

Halim, S. (2011), ‘VisuAlgo - visualising data structures and algorithms through animation’,
https://visualgo.net/en. Last accessed: 2021-03-27.

Hielscher, M. (2006a), ‘AtoCC’, http://www.atocc.de/cgi-bin/atocc/site.cgi?lang=
en&site=main. Last accessed: 2021-04-06.

Hielscher, M. (2006b), ‘AtoCC - eine Lernumgebung für theoretische Informatik’, http://
www.atocc.de/cgi-bin/atocc/site.cgi?lang=en&site=papers. Last accessed: 2021-
04-06.

Hundhausen, C. D., Douglas, S. A. and Stasko, J. T. (2002), ‘A Meta-Study of Algorithm
Visualization Effectiveness’, Journal of Visual Languages & Computing 13(3), 259–290.
URL: https://www.sciencedirect.com/science/article/pii/S1045926X02902375

Jakobsen, M. (2017), ‘Tombstone diagram drawing package for LaTeX’, https://github.com/
hrjakobsen/tombstone. Last accessed: 2021-04-06.

Lagerstrom, L. (2003), Programming the Web Using XHTML and JavaScript, McGraw-Hill.

Mernik, M. and Zumer, V. (2003), ‘An educational tool for teaching compiler construction’,
IEEE Transactions on Education 46(1), 61–68.
URL: https://ieeexplore.ieee.org/document/1183668

https://www.agilebusiness.org/page/ProjectFramework_10_MoSCoWPrioritisation
https://www.agilebusiness.org/page/ProjectFramework_10_MoSCoWPrioritisation
https://www.cs.usfca.edu/~galles/visualization/Algorithms.html
https://www.cs.usfca.edu/~galles/visualization/Algorithms.html
https://visualgo.net/en
http://www.atocc.de/cgi-bin/atocc/site.cgi?lang=en&site=main
http://www.atocc.de/cgi-bin/atocc/site.cgi?lang=en&site=main
http://www.atocc.de/cgi-bin/atocc/site.cgi?lang=en&site=papers
http://www.atocc.de/cgi-bin/atocc/site.cgi?lang=en&site=papers
https://github.com/hrjakobsen/tombstone
https://github.com/hrjakobsen/tombstone

60

Nielsen, J. (1994, 2020), ‘10 Usability Heuristics for User Interface Design’, https://www.
nngroup.com/articles/ten-usability-heuristics/. Last accessed: 2021-04-16.

Rosin, R. F. (1977), ‘A graphical notation for describing system implementation’, Software: Practice
and Experience 7(2), 239–250.
URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380070214

Ross, R. J. and Grinder, M. T. (2002), Hypertextbooks: Animated, Active Learning, Compre-
hensive Teaching and Learning Resources for the Web, in ‘Software Visualization’, Springer
Berlin Heidelberg, pp. 269–283.
URL: https://link.springer.com/chapter/10.1007/3-540-45875-1_21

Sebesta, R. (2007), Concepts of Programming Languages, 8th edn, Pearson Addison Wesley.

Slansky, J. and Finkelstein, M. (1968), ‘A Formalism for Program Translation’, J . ACM
15(2), 165–175.
URL: https://doi.org/10.1145/321450.321451

Strong, J., Wegstein, J., Tritter, A., Olsztyn, J., Mock, O. and Steel, T. (1958), ‘The Problem
of Programming Communication with Changing Machines: A Proposed Solution - Part 2’,
Commun. ACM 1(9), 9–16.
URL: https://doi.org/10.1145/368919.3165711

ter Horst, G. (2014), ‘Tombstone Diagrams for Dia’, https://github.com/Ghostbird/
Tombstone-shapes-for-Dia. Last accessed: 2021-04-06.

Watt, D. and Brown, D. (2000), Programming Language Processors in Java: Compilers and Interpreters,
Prentice Hall.

Wickerson, J. and Brunet, P. (2020), ‘Diagrams for Composing Compilers’, https://
johnwickerson.github.io/papers/jdiagrams.pdf. Last accessed: 2021-03-03.

https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://github.com/Ghostbird/Tombstone-shapes-for-Dia
https://github.com/Ghostbird/Tombstone-shapes-for-Dia
https://johnwickerson.github.io/papers/jdiagrams.pdf
https://johnwickerson.github.io/papers/jdiagrams.pdf

	Introduction
	Motivation
	Aims
	Structure

	Background
	Language processors
	From T-diagrams to J-diagrams
	Animation as an educational tool
	Related software

	Requirements
	MoSCoW
	User stories

	Design
	List of pieces
	Adding custom pieces
	Diagram scene
	Menu bar, toolbar and keyboard shortcuts
	Animation elements
	Overall design

	Implementation
	Overview
	List of pieces
	Diagram pieces
	Diagram scene
	Animation window
	Main window

	Evaluation
	Evaluation through usability heuristics
	Evaluation through user study

	Conclusion
	Summary
	Reflection
	Future work

	Appendices
	Code and Data Listings
	User study documents
	Ethics form
	Survey

	Guides
	Video guide
	Text guide

	Bibliography

